document.write( "Question 1199602: Find the equation of the ellipse with center at (0,0), vertices at (2,0)
\n" ); document.write( "and (-2,0), and eccentricity of 2/7. Sketch the ellipse.
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #848270 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
**1. Determine the value of 'a'**\r
\n" ); document.write( "\n" ); document.write( "* The vertices are at (±2, 0), which indicates that the major axis lies along the x-axis.
\n" ); document.write( "* The distance from the center (0, 0) to a vertex is the length of the semi-major axis (a).
\n" ); document.write( "* Therefore, a = 2\r
\n" ); document.write( "\n" ); document.write( "**2. Determine the value of 'c'**\r
\n" ); document.write( "\n" ); document.write( "* Eccentricity (e) = c/a
\n" ); document.write( "* where:
\n" ); document.write( " * e = eccentricity (2/7)
\n" ); document.write( " * c = distance from the center to a focus
\n" ); document.write( " * a = semi-major axis (2)\r
\n" ); document.write( "\n" ); document.write( "* 2/7 = c / 2
\n" ); document.write( "* c = 4/7\r
\n" ); document.write( "\n" ); document.write( "**3. Determine the value of 'b'**\r
\n" ); document.write( "\n" ); document.write( "* The relationship between a, b, and c in an ellipse is:
\n" ); document.write( " * c² = a² - b²\r
\n" ); document.write( "\n" ); document.write( "* (4/7)² = 2² - b²
\n" ); document.write( "* 16/49 = 4 - b²
\n" ); document.write( "* b² = 4 - 16/49
\n" ); document.write( "* b² = 176/49
\n" ); document.write( "* b = √(176/49) = (4√11) / 7 \r
\n" ); document.write( "\n" ); document.write( "**4. Write the equation of the ellipse**\r
\n" ); document.write( "\n" ); document.write( "* The standard equation of an ellipse centered at the origin with the major axis along the x-axis is:
\n" ); document.write( " * x²/a² + y²/b² = 1\r
\n" ); document.write( "\n" ); document.write( "* Substitute the values of a² and b²:
\n" ); document.write( " * x²/2² + y²/[(4√11)/7]² = 1
\n" ); document.write( " * x²/4 + y²/(176/49) = 1
\n" ); document.write( " * x²/4 + 49y²/176 = 1\r
\n" ); document.write( "\n" ); document.write( "**Therefore, the equation of the ellipse is x²/4 + 49y²/176 = 1**\r
\n" ); document.write( "\n" ); document.write( "**Sketching the Ellipse**\r
\n" ); document.write( "\n" ); document.write( "1. **Plot the center:** (0, 0)
\n" ); document.write( "2. **Plot the vertices:** (2, 0) and (-2, 0)
\n" ); document.write( "3. **Determine the endpoints of the minor axis:**
\n" ); document.write( " * Since b = (4√11)/7, the endpoints of the minor axis are (0, (4√11)/7) and (0, -(4√11)/7)
\n" ); document.write( "4. **Sketch the ellipse:**
\n" ); document.write( " * Draw a smooth curve connecting the vertices and the endpoints of the minor axis.\r
\n" ); document.write( "\n" ); document.write( "**Key Points:**\r
\n" ); document.write( "\n" ); document.write( "* The major axis of the ellipse lies along the x-axis.
\n" ); document.write( "* The eccentricity (2/7) indicates that the ellipse is relatively elongated.\r
\n" ); document.write( "\n" ); document.write( "I hope this helps! Let me know if you have any other questions.
\n" ); document.write( "
\n" ); document.write( "
\n" );