document.write( "Question 1199773: A simple random sample of size n=49 is obtained from a population with mean = 80 and standard deviation = 14. \r
\n" );
document.write( "\n" );
document.write( "a) Describe the sampling distribution of x̅.\r
\n" );
document.write( "\n" );
document.write( "b) What is P(x̅ > 83)?\r
\n" );
document.write( "\n" );
document.write( "c) What is P(x̅ ≤ 75.8)?\r
\n" );
document.write( "\n" );
document.write( "d) What is P(78.3 < x̅ < 85.1)? \n" );
document.write( "
Algebra.Com's Answer #848265 by CPhill(1987) You can put this solution on YOUR website! **a) Describe the sampling distribution of x̅**\r \n" ); document.write( "\n" ); document.write( "* **Mean of the sampling distribution (μx̅):** \n" ); document.write( " * μx̅ = μ = 80 \n" ); document.write( " * The mean of the sampling distribution of the sample means is equal to the population mean.\r \n" ); document.write( "\n" ); document.write( "* **Standard deviation of the sampling distribution (standard error):** \n" ); document.write( " * σx̅ = σ / √n = 14 / √49 = 14 / 7 = 2 \r \n" ); document.write( "\n" ); document.write( "* **Shape of the sampling distribution:** \n" ); document.write( " * Since the sample size (n = 49) is sufficiently large (n ≥ 30), according to the Central Limit Theorem, the sampling distribution of the sample mean (x̅) will be approximately normally distributed, regardless of the shape of the original population distribution.\r \n" ); document.write( "\n" ); document.write( "**Therefore:**\r \n" ); document.write( "\n" ); document.write( "* The sampling distribution of x̅ is approximately normally distributed with: \n" ); document.write( " * Mean (μx̅) = 80 \n" ); document.write( " * Standard deviation (σx̅) = 2 \r \n" ); document.write( "\n" ); document.write( "**b) P(x̅ > 83)**\r \n" ); document.write( "\n" ); document.write( "1. **Standardize the value:** \n" ); document.write( " * z = (x̅ - μx̅) / σx̅ \n" ); document.write( " * z = (83 - 80) / 2 = 1.5\r \n" ); document.write( "\n" ); document.write( "2. **Find the probability using a standard normal distribution table or calculator:** \n" ); document.write( " * P(x̅ > 83) = P(Z > 1.5) \n" ); document.write( " * From the z-table, P(Z > 1.5) = 0.0668\r \n" ); document.write( "\n" ); document.write( "**Therefore, P(x̅ > 83) = 0.0668**\r \n" ); document.write( "\n" ); document.write( "**c) P(x̅ ≤ 75.8)**\r \n" ); document.write( "\n" ); document.write( "1. **Standardize the value:** \n" ); document.write( " * z = (75.8 - 80) / 2 = -2.1\r \n" ); document.write( "\n" ); document.write( "2. **Find the probability using a standard normal distribution table or calculator:** \n" ); document.write( " * P(x̅ ≤ 75.8) = P(Z ≤ -2.1) \n" ); document.write( " * From the z-table, P(Z ≤ -2.1) = 0.0179\r \n" ); document.write( "\n" ); document.write( "**Therefore, P(x̅ ≤ 75.8) = 0.0179**\r \n" ); document.write( "\n" ); document.write( "**d) P(78.3 < x̅ < 85.1)**\r \n" ); document.write( "\n" ); document.write( "1. **Standardize the values:** \n" ); document.write( " * z1 = (78.3 - 80) / 2 = -0.85 \n" ); document.write( " * z2 = (85.1 - 80) / 2 = 2.55\r \n" ); document.write( "\n" ); document.write( "2. **Find the probabilities using a standard normal distribution table or calculator:** \n" ); document.write( " * P(x̅ < 85.1) = P(Z < 2.55) \n" ); document.write( " * P(x̅ < 78.3) = P(Z < -0.85)\r \n" ); document.write( "\n" ); document.write( "3. **Calculate the desired probability:** \n" ); document.write( " * P(78.3 < x̅ < 85.1) = P(x̅ < 85.1) - P(x̅ < 78.3) \n" ); document.write( " = P(Z < 2.55) - P(Z < -0.85) \n" ); document.write( " ≈ 0.9946 - 0.1977 \n" ); document.write( " ≈ 0.7969\r \n" ); document.write( "\n" ); document.write( "**Therefore, P(78.3 < x̅ < 85.1) = 0.7969** \n" ); document.write( " \n" ); document.write( " |