document.write( "Question 1198759: A products lift accelerates from rest to 0.16 m/s2\r
\n" ); document.write( "\n" ); document.write( "in 32 seconds. It then moves at constant velocity
\n" ); document.write( "for 33 seconds and then decelerates to rest in 15 seconds as . Lift pulley is 30cm
\n" ); document.write( "diameter carrying load 30 kg.\r
\n" ); document.write( "\n" ); document.write( "Apply dimensional analysis techniques and solve:
\n" ); document.write( "a) The linear velocity of the pulley.
\n" ); document.write( "b) The angular velocity of the cable.
\n" ); document.write( "c) The angular acceleration of the pulley.
\n" ); document.write( "d) The linear acceleration of cable.
\n" ); document.write( "e) The torque applied to the shaft.\r
\n" ); document.write( "\n" ); document.write( "State the formulae used to show that all values/units used are homogeneous. Given that :
\n" ); document.write( "v = vo + at , where , v ,is velocity , vo , is the initial velocity , a , is the acceleration and t is time.
\n" ); document.write( "Apply dimensional analysis techniques to develop two equations for power in terms of linear
\n" ); document.write( "velocity and angular velocity, from the formulae used above.
\n" ); document.write( "

Algebra.Com's Answer #848229 by textot(100)\"\" \"About 
You can put this solution on YOUR website!
**a) Linear Velocity of the Pulley**\r
\n" ); document.write( "\n" ); document.write( "* **Acceleration Phase:**
\n" ); document.write( " * v = u + at
\n" ); document.write( " * v = 0 + (0.16 m/s²) * (32 s)
\n" ); document.write( " * v = 5.12 m/s \r
\n" ); document.write( "\n" ); document.write( "* **Constant Velocity Phase:**
\n" ); document.write( " * The linear velocity remains constant at 5.12 m/s during this phase.\r
\n" ); document.write( "\n" ); document.write( "* **Deceleration Phase:**
\n" ); document.write( " * v = u + at
\n" ); document.write( " * 0 = 5.12 m/s + a * (15 s)
\n" ); document.write( " * a = -5.12 m/s / 15 s
\n" ); document.write( " * a = -0.3413 m/s²\r
\n" ); document.write( "\n" ); document.write( "* **Linear Velocity of the Pulley:** 5.12 m/s\r
\n" ); document.write( "\n" ); document.write( "**b) Angular Velocity of the Cable**\r
\n" ); document.write( "\n" ); document.write( "* **Linear Velocity (v):** 5.12 m/s
\n" ); document.write( "* **Radius of the Pulley (r):** 0.30 m / 2 = 0.15 m\r
\n" ); document.write( "\n" ); document.write( "* **Angular Velocity (ω):** ω = v / r
\n" ); document.write( " * ω = 5.12 m/s / 0.15 m
\n" ); document.write( " * ω = 34.13 rad/s\r
\n" ); document.write( "\n" ); document.write( "**c) Angular Acceleration of the Pulley**\r
\n" ); document.write( "\n" ); document.write( "* **Linear Acceleration (a):** 0.16 m/s²
\n" ); document.write( "* **Radius of the Pulley (r):** 0.15 m\r
\n" ); document.write( "\n" ); document.write( "* **Angular Acceleration (α):** α = a / r
\n" ); document.write( " * α = 0.16 m/s² / 0.15 m
\n" ); document.write( " * α = 1.067 rad/s²\r
\n" ); document.write( "\n" ); document.write( "**d) Linear Acceleration of the Cable**\r
\n" ); document.write( "\n" ); document.write( "* **During Acceleration:** 0.16 m/s²
\n" ); document.write( "* **During Constant Velocity:** 0 m/s²
\n" ); document.write( "* **During Deceleration:** -0.3413 m/s²\r
\n" ); document.write( "\n" ); document.write( "**e) Torque Applied to the Shaft**\r
\n" ); document.write( "\n" ); document.write( "* **Torque (τ):** τ = I * α
\n" ); document.write( " * where I is the moment of inertia of the pulley and α is the angular acceleration.\r
\n" ); document.write( "\n" ); document.write( "* **Assuming the pulley is a solid disk:**
\n" ); document.write( " * I = (1/2) * M * r²
\n" ); document.write( " * where M is the mass of the pulley and r is the radius.\r
\n" ); document.write( "\n" ); document.write( "* **To find the mass of the pulley, we need the density of the material.** \r
\n" ); document.write( "\n" ); document.write( "**Dimensional Analysis**\r
\n" ); document.write( "\n" ); document.write( "* **v = u + at**
\n" ); document.write( " * [L/T] = [L/T] + [L/T²] * [T]
\n" ); document.write( " * [L/T] = [L/T] \r
\n" ); document.write( "\n" ); document.write( "* **ω = v / r**
\n" ); document.write( " * [rad/s] = [L/T] / [L]
\n" ); document.write( " * [1/s] = [1/s] \r
\n" ); document.write( "\n" ); document.write( "* **α = a / r**
\n" ); document.write( " * [rad/s²] = [L/T²] / [L]
\n" ); document.write( " * [1/s²] = [1/s²]\r
\n" ); document.write( "\n" ); document.write( "* **τ = I * α**
\n" ); document.write( " * [N.m] = [kg.m²] * [rad/s²]
\n" ); document.write( " * [kg.m/s²] * [m] = [kg.m²/s²] * [m]
\n" ); document.write( " * [kg.m²/s²] = [kg.m²/s²]\r
\n" ); document.write( "\n" ); document.write( "**Power Equations**\r
\n" ); document.write( "\n" ); document.write( "* **Power (P) = Force (F) * Velocity (v)** \r
\n" ); document.write( "\n" ); document.write( " * P = m * a * v
\n" ); document.write( " * [W] = [kg] * [L/T²] * [L/T]
\n" ); document.write( " * [kg.m²/s³] = [kg.m²/s³]\r
\n" ); document.write( "\n" ); document.write( "* **Power (P) = Torque (τ) * Angular Velocity (ω)** \r
\n" ); document.write( "\n" ); document.write( " * P = I * α * ω
\n" ); document.write( " * [W] = [kg.m²] * [rad/s²] * [rad/s]
\n" ); document.write( " * [kg.m²/s³] = [kg.m²/s³]\r
\n" ); document.write( "\n" ); document.write( "**Note:**\r
\n" ); document.write( "\n" ); document.write( "* This analysis assumes that the pulley is a solid disk.
\n" ); document.write( "* The mass of the pulley and the load it carries will affect the torque required and the overall power consumption.
\n" ); document.write( "* This analysis does not consider factors such as friction and efficiency losses.\r
\n" ); document.write( "\n" ); document.write( "**I hope this comprehensive analysis helps!**
\n" ); document.write( "
\n" ); document.write( "
\n" );