document.write( "Question 1198759: A products lift accelerates from rest to 0.16 m/s2\r
\n" );
document.write( "\n" );
document.write( "in 32 seconds. It then moves at constant velocity
\n" );
document.write( "for 33 seconds and then decelerates to rest in 15 seconds as . Lift pulley is 30cm
\n" );
document.write( "diameter carrying load 30 kg.\r
\n" );
document.write( "\n" );
document.write( "Apply dimensional analysis techniques and solve:
\n" );
document.write( "a) The linear velocity of the pulley.
\n" );
document.write( "b) The angular velocity of the cable.
\n" );
document.write( "c) The angular acceleration of the pulley.
\n" );
document.write( "d) The linear acceleration of cable.
\n" );
document.write( "e) The torque applied to the shaft.\r
\n" );
document.write( "\n" );
document.write( "State the formulae used to show that all values/units used are homogeneous. Given that :
\n" );
document.write( "v = vo + at , where , v ,is velocity , vo , is the initial velocity , a , is the acceleration and t is time.
\n" );
document.write( "Apply dimensional analysis techniques to develop two equations for power in terms of linear
\n" );
document.write( "velocity and angular velocity, from the formulae used above. \n" );
document.write( "
Algebra.Com's Answer #848229 by textot(100)![]() ![]() ![]() You can put this solution on YOUR website! **a) Linear Velocity of the Pulley**\r \n" ); document.write( "\n" ); document.write( "* **Acceleration Phase:** \n" ); document.write( " * v = u + at \n" ); document.write( " * v = 0 + (0.16 m/s²) * (32 s) \n" ); document.write( " * v = 5.12 m/s \r \n" ); document.write( "\n" ); document.write( "* **Constant Velocity Phase:** \n" ); document.write( " * The linear velocity remains constant at 5.12 m/s during this phase.\r \n" ); document.write( "\n" ); document.write( "* **Deceleration Phase:** \n" ); document.write( " * v = u + at \n" ); document.write( " * 0 = 5.12 m/s + a * (15 s) \n" ); document.write( " * a = -5.12 m/s / 15 s \n" ); document.write( " * a = -0.3413 m/s²\r \n" ); document.write( "\n" ); document.write( "* **Linear Velocity of the Pulley:** 5.12 m/s\r \n" ); document.write( "\n" ); document.write( "**b) Angular Velocity of the Cable**\r \n" ); document.write( "\n" ); document.write( "* **Linear Velocity (v):** 5.12 m/s \n" ); document.write( "* **Radius of the Pulley (r):** 0.30 m / 2 = 0.15 m\r \n" ); document.write( "\n" ); document.write( "* **Angular Velocity (ω):** ω = v / r \n" ); document.write( " * ω = 5.12 m/s / 0.15 m \n" ); document.write( " * ω = 34.13 rad/s\r \n" ); document.write( "\n" ); document.write( "**c) Angular Acceleration of the Pulley**\r \n" ); document.write( "\n" ); document.write( "* **Linear Acceleration (a):** 0.16 m/s² \n" ); document.write( "* **Radius of the Pulley (r):** 0.15 m\r \n" ); document.write( "\n" ); document.write( "* **Angular Acceleration (α):** α = a / r \n" ); document.write( " * α = 0.16 m/s² / 0.15 m \n" ); document.write( " * α = 1.067 rad/s²\r \n" ); document.write( "\n" ); document.write( "**d) Linear Acceleration of the Cable**\r \n" ); document.write( "\n" ); document.write( "* **During Acceleration:** 0.16 m/s² \n" ); document.write( "* **During Constant Velocity:** 0 m/s² \n" ); document.write( "* **During Deceleration:** -0.3413 m/s²\r \n" ); document.write( "\n" ); document.write( "**e) Torque Applied to the Shaft**\r \n" ); document.write( "\n" ); document.write( "* **Torque (τ):** τ = I * α \n" ); document.write( " * where I is the moment of inertia of the pulley and α is the angular acceleration.\r \n" ); document.write( "\n" ); document.write( "* **Assuming the pulley is a solid disk:** \n" ); document.write( " * I = (1/2) * M * r² \n" ); document.write( " * where M is the mass of the pulley and r is the radius.\r \n" ); document.write( "\n" ); document.write( "* **To find the mass of the pulley, we need the density of the material.** \r \n" ); document.write( "\n" ); document.write( "**Dimensional Analysis**\r \n" ); document.write( "\n" ); document.write( "* **v = u + at** \n" ); document.write( " * [L/T] = [L/T] + [L/T²] * [T] \n" ); document.write( " * [L/T] = [L/T] \r \n" ); document.write( "\n" ); document.write( "* **ω = v / r** \n" ); document.write( " * [rad/s] = [L/T] / [L] \n" ); document.write( " * [1/s] = [1/s] \r \n" ); document.write( "\n" ); document.write( "* **α = a / r** \n" ); document.write( " * [rad/s²] = [L/T²] / [L] \n" ); document.write( " * [1/s²] = [1/s²]\r \n" ); document.write( "\n" ); document.write( "* **τ = I * α** \n" ); document.write( " * [N.m] = [kg.m²] * [rad/s²] \n" ); document.write( " * [kg.m/s²] * [m] = [kg.m²/s²] * [m] \n" ); document.write( " * [kg.m²/s²] = [kg.m²/s²]\r \n" ); document.write( "\n" ); document.write( "**Power Equations**\r \n" ); document.write( "\n" ); document.write( "* **Power (P) = Force (F) * Velocity (v)** \r \n" ); document.write( "\n" ); document.write( " * P = m * a * v \n" ); document.write( " * [W] = [kg] * [L/T²] * [L/T] \n" ); document.write( " * [kg.m²/s³] = [kg.m²/s³]\r \n" ); document.write( "\n" ); document.write( "* **Power (P) = Torque (τ) * Angular Velocity (ω)** \r \n" ); document.write( "\n" ); document.write( " * P = I * α * ω \n" ); document.write( " * [W] = [kg.m²] * [rad/s²] * [rad/s] \n" ); document.write( " * [kg.m²/s³] = [kg.m²/s³]\r \n" ); document.write( "\n" ); document.write( "**Note:**\r \n" ); document.write( "\n" ); document.write( "* This analysis assumes that the pulley is a solid disk. \n" ); document.write( "* The mass of the pulley and the load it carries will affect the torque required and the overall power consumption. \n" ); document.write( "* This analysis does not consider factors such as friction and efficiency losses.\r \n" ); document.write( "\n" ); document.write( "**I hope this comprehensive analysis helps!** \n" ); document.write( " \n" ); document.write( " |