document.write( "Question 1198875: The following data are a random sample of turtles and their weights (ounces).
\n" ); document.write( "{18,16,20,12,11,10,16,17}
\n" ); document.write( "Assume the underlying population distribution is approximately normal and has no outliers. Find the following, rounding your intermediate steps and answers to 3 decimal places.\r
\n" ); document.write( "\n" ); document.write( "a. Find the sample standard deviation.
\n" ); document.write( "s=\r
\n" ); document.write( "\n" ); document.write( "b. Find the 95% confidence interval for the population standard deviation.
\n" ); document.write( "(,)\r
\n" ); document.write( "\n" ); document.write( "c. Find the 99% confidence interval for the population standard deviation.
\n" ); document.write( "(,)\r
\n" ); document.write( "\n" ); document.write( "d. As expected, the answer for part c. is ____ than the answer for part b.\r
\n" ); document.write( "\n" ); document.write( "e. The lower bound is ____ the upper bound is from s because of the shape of the χ2 distribution.
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #848224 by textot(100)\"\" \"About 
You can put this solution on YOUR website!
**a. Sample Standard Deviation**\r
\n" ); document.write( "\n" ); document.write( "1. **Calculate the sample mean (x̄):**
\n" ); document.write( " x̄ = (18 + 16 + 20 + 12 + 11 + 10 + 16 + 17) / 8 = 15\r
\n" ); document.write( "\n" ); document.write( "2. **Calculate the squared differences from the mean:**
\n" ); document.write( " (18-15)² = 9
\n" ); document.write( " (16-15)² = 1
\n" ); document.write( " (20-15)² = 25
\n" ); document.write( " (12-15)² = 9
\n" ); document.write( " (11-15)² = 16
\n" ); document.write( " (10-15)² = 25
\n" ); document.write( " (16-15)² = 1
\n" ); document.write( " (17-15)² = 4\r
\n" ); document.write( "\n" ); document.write( "3. **Sum the squared differences:**
\n" ); document.write( " 9 + 1 + 25 + 9 + 16 + 25 + 1 + 4 = 89\r
\n" ); document.write( "\n" ); document.write( "4. **Calculate the sample variance (s²):**
\n" ); document.write( " s² = Σ(x - x̄)² / (n - 1) = 89 / (8 - 1) = 12.714\r
\n" ); document.write( "\n" ); document.write( "5. **Calculate the sample standard deviation (s):**
\n" ); document.write( " s = √s² = √12.714 = 3.566\r
\n" ); document.write( "\n" ); document.write( "**Therefore, the sample standard deviation (s) is 3.566**\r
\n" ); document.write( "\n" ); document.write( "**b. 95% Confidence Interval for the Population Standard Deviation**\r
\n" ); document.write( "\n" ); document.write( "* **Find the chi-square values:**
\n" ); document.write( " * Degrees of freedom (df) = n - 1 = 8 - 1 = 7
\n" ); document.write( " * Using a chi-square table or calculator:
\n" ); document.write( " * χ²_lower (for 0.025 area in the right tail) = 2.167
\n" ); document.write( " * χ²_upper (for 0.025 area in the left tail) = 18.475\r
\n" ); document.write( "\n" ); document.write( "* **Calculate the confidence interval:**
\n" ); document.write( " * Lower bound: √[(n - 1) * s² / χ²_upper] = √[(7 * 12.714) / 18.475] = 2.172
\n" ); document.write( " * Upper bound: √[(n - 1) * s² / χ²_lower] = √[(7 * 12.714) / 2.167] = 6.390\r
\n" ); document.write( "\n" ); document.write( "* **95% Confidence Interval: (2.172, 6.390)**\r
\n" ); document.write( "\n" ); document.write( "**c. 99% Confidence Interval for the Population Standard Deviation**\r
\n" ); document.write( "\n" ); document.write( "* **Find the chi-square values:**
\n" ); document.write( " * Degrees of freedom (df) = 7
\n" ); document.write( " * Using a chi-square table or calculator:
\n" ); document.write( " * χ²_lower (for 0.005 area in the right tail) = 0.989
\n" ); document.write( " * χ²_upper (for 0.005 area in the left tail) = 20.278\r
\n" ); document.write( "\n" ); document.write( "* **Calculate the confidence interval:**
\n" ); document.write( " * Lower bound: √[(7 * 12.714) / 20.278] = 1.974
\n" ); document.write( " * Upper bound: √[(7 * 12.714) / 0.989] = 9.446\r
\n" ); document.write( "\n" ); document.write( "* **99% Confidence Interval: (1.974, 9.446)**\r
\n" ); document.write( "\n" ); document.write( "**d. As expected, the answer for part c. is wider** than the answer for part b.\r
\n" ); document.write( "\n" ); document.write( "**e. The lower bound is lower** and **the upper bound is higher** from s because of the shape of the chi-square distribution.\r
\n" ); document.write( "\n" ); document.write( "* The chi-square distribution is skewed to the right.
\n" ); document.write( "* For a higher confidence level (like 99%), we need a wider interval to capture more of the possible values of the population standard deviation. This results in a lower lower bound and a higher upper bound compared to the 95% confidence interval.
\n" ); document.write( "
\n" ); document.write( "
\n" );