document.write( "Question 1199331: Use the gradient method to find the maximum of the function f(x,y)=54y−(5x^2+9y^2)+70x−319 with initial point x0=(8,5) and λ=0.08. (The number λ is also known as step size or learning rate.)\r
\n" );
document.write( "\n" );
document.write( "The first two points of the iteration are
\n" );
document.write( "x1=(7.2,2.12) CORRECT
\n" );
document.write( "x2=(-2.40032,37.2096) WRONG\r
\n" );
document.write( "\n" );
document.write( "The maximum of the function is in (you may need to change the value of λ to achieve convergence):\r
\n" );
document.write( "\n" );
document.write( "xopt=(___,___)\r
\n" );
document.write( "\n" );
document.write( "The maximum value of the function is\r
\n" );
document.write( "\n" );
document.write( "fopt=_____
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #848223 by textot(100)![]() ![]() ![]() You can put this solution on YOUR website! **1. Define the Function and its Gradient**\r \n" ); document.write( "\n" ); document.write( "* **Function:** \n" ); document.write( " f(x, y) = 54y - (5x² + 9y²) + 70x - 319\r \n" ); document.write( "\n" ); document.write( "* **Gradient of the Function:** \n" ); document.write( " ∇f(x, y) = (∂f/∂x, ∂f/∂y) = (70 - 10x, 54 - 18y)\r \n" ); document.write( "\n" ); document.write( "**2. Implement Gradient Ascent**\r \n" ); document.write( "\n" ); document.write( "* **Initialize:** \n" ); document.write( " - `x0 = np.array([8, 5])` \n" ); document.write( " - `learning_rate = 0.08` \n" ); document.write( " - `max_iter = 1000` \n" ); document.write( " - `tol = 1e-6` \r \n" ); document.write( "\n" ); document.write( "* **Iterate:** \n" ); document.write( " 1. Calculate the gradient at the current point `x`. \n" ); document.write( " 2. Update `x` using the gradient ascent update rule: \n" ); document.write( " `x = x + learning_rate * gradient` \n" ); document.write( " 3. Check for convergence (e.g., if the magnitude of the gradient is below the tolerance).\r \n" ); document.write( "\n" ); document.write( "**3. Find the Maximum**\r \n" ); document.write( "\n" ); document.write( "* Run the gradient ascent algorithm. \n" ); document.write( "* The final value of `x` after convergence will be the approximate location of the maximum. \n" ); document.write( "* Evaluate the function `f(x)` at this point to find the maximum value.\r \n" ); document.write( "\n" ); document.write( "**4. Adjust Learning Rate (if necessary)**\r \n" ); document.write( "\n" ); document.write( "* If the algorithm doesn't converge or oscillates, try adjusting the `learning_rate`. \n" ); document.write( " * A smaller learning rate can help with convergence but may slow down the process. \n" ); document.write( " * A larger learning rate can speed up convergence but may cause the algorithm to overshoot the maximum.\r \n" ); document.write( "\n" ); document.write( "**Python Implementation**\r \n" ); document.write( "\n" ); document.write( "```python \n" ); document.write( "import numpy as np\r \n" ); document.write( "\n" ); document.write( "def gradient_ascent(f, grad_f, x0, learning_rate, max_iter=1000, tol=1e-6): \n" ); document.write( " \"\"\" \n" ); document.write( " Performs gradient ascent to find the maximum of a function.\r \n" ); document.write( "\n" ); document.write( " Args: \n" ); document.write( " f: The function to optimize. \n" ); document.write( " grad_f: The gradient of the function. \n" ); document.write( " x0: The initial point. \n" ); document.write( " learning_rate: The step size for the gradient ascent. \n" ); document.write( " max_iter: The maximum number of iterations. \n" ); document.write( " tol: The tolerance for convergence.\r \n" ); document.write( "\n" ); document.write( " Returns: \n" ); document.write( " x_opt: The optimal point found by the algorithm. \n" ); document.write( " f_opt: The maximum value of the function at x_opt. \n" ); document.write( " \"\"\"\r \n" ); document.write( "\n" ); document.write( " x = np.array(x0) \n" ); document.write( " for _ in range(max_iter): \n" ); document.write( " gradient = grad_f(x) \n" ); document.write( " x = x + learning_rate * gradient \n" ); document.write( " if np.linalg.norm(gradient) < tol: \n" ); document.write( " break\r \n" ); document.write( "\n" ); document.write( " return x, f(x)\r \n" ); document.write( "\n" ); document.write( "# Define the function \n" ); document.write( "def f(x): \n" ); document.write( " return 54*x[1] - (5*x[0]**2 + 9*x[1]**2) + 70*x[0] - 319\r \n" ); document.write( "\n" ); document.write( "# Define the gradient of the function \n" ); document.write( "def grad_f(x): \n" ); document.write( " return np.array([70 - 10*x[0], 54 - 18*x[1]])\r \n" ); document.write( "\n" ); document.write( "# Initial point \n" ); document.write( "x0 = np.array([8, 5])\r \n" ); document.write( "\n" ); document.write( "# Learning rate \n" ); document.write( "learning_rate = 0.08\r \n" ); document.write( "\n" ); document.write( "# Perform gradient ascent \n" ); document.write( "x_opt, f_opt = gradient_ascent(f, grad_f, x0, learning_rate)\r \n" ); document.write( "\n" ); document.write( "# Print the results \n" ); document.write( "print(f\"Maximum point: {x_opt}\") \n" ); document.write( "print(f\"Maximum value: {f_opt}\") \n" ); document.write( "```\r \n" ); document.write( "\n" ); document.write( "**Output:**\r \n" ); document.write( "\n" ); document.write( "``` \n" ); document.write( "Maximum point: [7. 2.99999999] \n" ); document.write( "Maximum value: 7.0 \n" ); document.write( "```\r \n" ); document.write( "\n" ); document.write( "**Therefore:**\r \n" ); document.write( "\n" ); document.write( "* **x_opt = (7.0, 3.0)** \n" ); document.write( "* **f_opt = 7.0**\r \n" ); document.write( "\n" ); document.write( "This result indicates that the maximum of the function f(x, y) is approximately 7.0, which occurs at the point (7.0, 3.0). \n" ); document.write( " \n" ); document.write( " |