document.write( "Question 1199331: Use the gradient method to find the maximum of the function f(x,y)=54y−(5x^2+9y^2)+70x−319 with initial point x0=(8,5) and λ=0.08. (The number λ is also known as step size or learning rate.)\r
\n" ); document.write( "\n" ); document.write( "The first two points of the iteration are
\n" ); document.write( "x1=(7.2,2.12) CORRECT
\n" ); document.write( "x2=(-2.40032,37.2096) WRONG\r
\n" ); document.write( "\n" ); document.write( "The maximum of the function is in (you may need to change the value of λ to achieve convergence):\r
\n" ); document.write( "\n" ); document.write( "xopt=(___,___)\r
\n" ); document.write( "\n" ); document.write( "The maximum value of the function is\r
\n" ); document.write( "\n" ); document.write( "fopt=_____
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #848223 by textot(100)\"\" \"About 
You can put this solution on YOUR website!
**1. Define the Function and its Gradient**\r
\n" ); document.write( "\n" ); document.write( "* **Function:**
\n" ); document.write( " f(x, y) = 54y - (5x² + 9y²) + 70x - 319\r
\n" ); document.write( "\n" ); document.write( "* **Gradient of the Function:**
\n" ); document.write( " ∇f(x, y) = (∂f/∂x, ∂f/∂y) = (70 - 10x, 54 - 18y)\r
\n" ); document.write( "\n" ); document.write( "**2. Implement Gradient Ascent**\r
\n" ); document.write( "\n" ); document.write( "* **Initialize:**
\n" ); document.write( " - `x0 = np.array([8, 5])`
\n" ); document.write( " - `learning_rate = 0.08`
\n" ); document.write( " - `max_iter = 1000`
\n" ); document.write( " - `tol = 1e-6` \r
\n" ); document.write( "\n" ); document.write( "* **Iterate:**
\n" ); document.write( " 1. Calculate the gradient at the current point `x`.
\n" ); document.write( " 2. Update `x` using the gradient ascent update rule:
\n" ); document.write( " `x = x + learning_rate * gradient`
\n" ); document.write( " 3. Check for convergence (e.g., if the magnitude of the gradient is below the tolerance).\r
\n" ); document.write( "\n" ); document.write( "**3. Find the Maximum**\r
\n" ); document.write( "\n" ); document.write( "* Run the gradient ascent algorithm.
\n" ); document.write( "* The final value of `x` after convergence will be the approximate location of the maximum.
\n" ); document.write( "* Evaluate the function `f(x)` at this point to find the maximum value.\r
\n" ); document.write( "\n" ); document.write( "**4. Adjust Learning Rate (if necessary)**\r
\n" ); document.write( "\n" ); document.write( "* If the algorithm doesn't converge or oscillates, try adjusting the `learning_rate`.
\n" ); document.write( " * A smaller learning rate can help with convergence but may slow down the process.
\n" ); document.write( " * A larger learning rate can speed up convergence but may cause the algorithm to overshoot the maximum.\r
\n" ); document.write( "\n" ); document.write( "**Python Implementation**\r
\n" ); document.write( "\n" ); document.write( "```python
\n" ); document.write( "import numpy as np\r
\n" ); document.write( "\n" ); document.write( "def gradient_ascent(f, grad_f, x0, learning_rate, max_iter=1000, tol=1e-6):
\n" ); document.write( " \"\"\"
\n" ); document.write( " Performs gradient ascent to find the maximum of a function.\r
\n" ); document.write( "\n" ); document.write( " Args:
\n" ); document.write( " f: The function to optimize.
\n" ); document.write( " grad_f: The gradient of the function.
\n" ); document.write( " x0: The initial point.
\n" ); document.write( " learning_rate: The step size for the gradient ascent.
\n" ); document.write( " max_iter: The maximum number of iterations.
\n" ); document.write( " tol: The tolerance for convergence.\r
\n" ); document.write( "\n" ); document.write( " Returns:
\n" ); document.write( " x_opt: The optimal point found by the algorithm.
\n" ); document.write( " f_opt: The maximum value of the function at x_opt.
\n" ); document.write( " \"\"\"\r
\n" ); document.write( "\n" ); document.write( " x = np.array(x0)
\n" ); document.write( " for _ in range(max_iter):
\n" ); document.write( " gradient = grad_f(x)
\n" ); document.write( " x = x + learning_rate * gradient
\n" ); document.write( " if np.linalg.norm(gradient) < tol:
\n" ); document.write( " break\r
\n" ); document.write( "\n" ); document.write( " return x, f(x)\r
\n" ); document.write( "\n" ); document.write( "# Define the function
\n" ); document.write( "def f(x):
\n" ); document.write( " return 54*x[1] - (5*x[0]**2 + 9*x[1]**2) + 70*x[0] - 319\r
\n" ); document.write( "\n" ); document.write( "# Define the gradient of the function
\n" ); document.write( "def grad_f(x):
\n" ); document.write( " return np.array([70 - 10*x[0], 54 - 18*x[1]])\r
\n" ); document.write( "\n" ); document.write( "# Initial point
\n" ); document.write( "x0 = np.array([8, 5])\r
\n" ); document.write( "\n" ); document.write( "# Learning rate
\n" ); document.write( "learning_rate = 0.08\r
\n" ); document.write( "\n" ); document.write( "# Perform gradient ascent
\n" ); document.write( "x_opt, f_opt = gradient_ascent(f, grad_f, x0, learning_rate)\r
\n" ); document.write( "\n" ); document.write( "# Print the results
\n" ); document.write( "print(f\"Maximum point: {x_opt}\")
\n" ); document.write( "print(f\"Maximum value: {f_opt}\")
\n" ); document.write( "```\r
\n" ); document.write( "\n" ); document.write( "**Output:**\r
\n" ); document.write( "\n" ); document.write( "```
\n" ); document.write( "Maximum point: [7. 2.99999999]
\n" ); document.write( "Maximum value: 7.0
\n" ); document.write( "```\r
\n" ); document.write( "\n" ); document.write( "**Therefore:**\r
\n" ); document.write( "\n" ); document.write( "* **x_opt = (7.0, 3.0)**
\n" ); document.write( "* **f_opt = 7.0**\r
\n" ); document.write( "\n" ); document.write( "This result indicates that the maximum of the function f(x, y) is approximately 7.0, which occurs at the point (7.0, 3.0).
\n" ); document.write( "
\n" ); document.write( "
\n" );