document.write( "Question 1199332: Use the gradient rise method©to optimize the function f(x,y)=6xy−(19x^2+3y^2)−36x−14y+13 with starting point x0=(−3,−4) and λ=0.01.\r
\n" );
document.write( "\n" );
document.write( "The first two points of the iteration are\r
\n" );
document.write( "\n" );
document.write( "x1=(-2.46 , -4.08 ) CORRECT
\n" );
document.write( "x2=(-2.13 , -4.1228 ) CORRECT\r
\n" );
document.write( "\n" );
document.write( "The main function is in\r
\n" );
document.write( "\n" );
document.write( "xopt=(952717619 , -150328908.2) WRONG\r
\n" );
document.write( "\n" );
document.write( "The optimal value of the function is\r
\n" );
document.write( "\n" );
document.write( "fopt=____
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #848217 by textot(100)![]() ![]() ![]() You can put this solution on YOUR website! **1. Define the Function and its Gradient**\r \n" ); document.write( "\n" ); document.write( "* **Function:** \n" ); document.write( " f(x, y) = 6xy - (19x² + 3y²) - 36x - 14y + 13\r \n" ); document.write( "\n" ); document.write( "* **Gradient of the Function:** \n" ); document.write( " ∇f(x, y) = (∂f/∂x, ∂f/∂y) = (6y - 38x - 36, 6x - 6y - 14)\r \n" ); document.write( "\n" ); document.write( "**2. Implement Gradient Ascent**\r \n" ); document.write( "\n" ); document.write( "* **Initialize:** \n" ); document.write( " - `x0 = np.array([-3, -4])` \n" ); document.write( " - `learning_rate = 0.01` \n" ); document.write( " - `max_iter = 1000` \n" ); document.write( " - `tol = 1e-6` \r \n" ); document.write( "\n" ); document.write( "* **Iterate:** \n" ); document.write( " 1. Calculate the gradient at the current point `x`. \n" ); document.write( " 2. Update `x` using the gradient ascent update rule: \n" ); document.write( " `x = x + learning_rate * gradient` \n" ); document.write( " 3. Check for convergence (e.g., if the magnitude of the gradient is below the tolerance).\r \n" ); document.write( "\n" ); document.write( "**3. Find the Maximum**\r \n" ); document.write( "\n" ); document.write( "* Run the gradient ascent algorithm. \n" ); document.write( "* The final value of `x` after convergence will be the approximate location of the maximum. \n" ); document.write( "* Evaluate the function `f(x)` at this point to find the maximum value.\r \n" ); document.write( "\n" ); document.write( "**4. Adjust Learning Rate (if necessary)**\r \n" ); document.write( "\n" ); document.write( "* If the algorithm doesn't converge or oscillates, try adjusting the `learning_rate`. \n" ); document.write( " * A smaller learning rate can help with convergence but may slow down the process. \n" ); document.write( " * A larger learning rate can speed up convergence but may cause the algorithm to overshoot the maximum.\r \n" ); document.write( "\n" ); document.write( "**Python Implementation**\r \n" ); document.write( "\n" ); document.write( "```python \n" ); document.write( "import numpy as np\r \n" ); document.write( "\n" ); document.write( "def gradient_ascent(f, grad_f, x0, learning_rate, max_iter=1000, tol=1e-6): \n" ); document.write( " \"\"\" \n" ); document.write( " Performs gradient ascent to find the maximum of a function.\r \n" ); document.write( "\n" ); document.write( " Args: \n" ); document.write( " f: The function to optimize. \n" ); document.write( " grad_f: The gradient of the function. \n" ); document.write( " x0: The initial point. \n" ); document.write( " learning_rate: The step size for the gradient ascent. \n" ); document.write( " max_iter: The maximum number of iterations. \n" ); document.write( " tol: The tolerance for convergence.\r \n" ); document.write( "\n" ); document.write( " Returns: \n" ); document.write( " x_opt: The optimal point found by the algorithm. \n" ); document.write( " f_opt: The maximum value of the function at x_opt. \n" ); document.write( " \"\"\"\r \n" ); document.write( "\n" ); document.write( " x = np.array(x0) \n" ); document.write( " for _ in range(max_iter): \n" ); document.write( " gradient = grad_f(x) \n" ); document.write( " x = x + learning_rate * gradient \n" ); document.write( " if np.linalg.norm(gradient) < tol: \n" ); document.write( " break\r \n" ); document.write( "\n" ); document.write( " return x, f(x)\r \n" ); document.write( "\n" ); document.write( "# Define the function \n" ); document.write( "def f(x): \n" ); document.write( " return 6*x[0]*x[1] - (19*x[0]**2 + 3*x[1]**2) - 36*x[0] - 14*x[1] + 13\r \n" ); document.write( "\n" ); document.write( "# Define the gradient of the function \n" ); document.write( "def grad_f(x): \n" ); document.write( " return np.array([6*x[1] - 38*x[0] - 36, 6*x[0] - 6*x[1] - 14])\r \n" ); document.write( "\n" ); document.write( "# Initial point \n" ); document.write( "x0 = np.array([-3, -4])\r \n" ); document.write( "\n" ); document.write( "# Learning rate \n" ); document.write( "learning_rate = 0.01\r \n" ); document.write( "\n" ); document.write( "# Perform gradient ascent \n" ); document.write( "x_opt, f_opt = gradient_ascent(f, grad_f, x0, learning_rate)\r \n" ); document.write( "\n" ); document.write( "# Print the results \n" ); document.write( "print(f\"Maximum point: {x_opt}\") \n" ); document.write( "print(f\"Maximum value: {f_opt}\") \n" ); document.write( "```\r \n" ); document.write( "\n" ); document.write( "**Output:**\r \n" ); document.write( "\n" ); document.write( "``` \n" ); document.write( "Maximum point: [-1.56250003 -3.89583352] \n" ); document.write( "Maximum value: 68.39583333333324 \n" ); document.write( "```\r \n" ); document.write( "\n" ); document.write( "**Therefore:**\r \n" ); document.write( "\n" ); document.write( "* **x_opt = (-1.5625, -3.8958)** \n" ); document.write( "* **f_opt = 68.3958**\r \n" ); document.write( "\n" ); document.write( "This result indicates that the maximum of the function f(x, y) is approximately 68.3958, which occurs at the point (-1.5625, -3.8958). \n" ); document.write( " \n" ); document.write( " |