document.write( "Question 1208962: Premise:
\n" );
document.write( "1.(∃x) (Ax • Bx) ∨ (∃x) (Cx ∨ Dx)
\n" );
document.write( "2.(∃x) (Ax ∨ Cx) ⊃ (x) Ex
\n" );
document.write( "3.~Em
\n" );
document.write( "Conclusion:
\n" );
document.write( "(∃x) Dx \n" );
document.write( "
Algebra.Com's Answer #848176 by textot(100)![]() ![]() ![]() You can put this solution on YOUR website! **1. (∃x) (Ax • Bx) ∨ (∃x) (Cx ∨ Dx)** \n" ); document.write( " Given\r \n" ); document.write( "\n" ); document.write( "**2. (∃x) (Ax ∨ Cx) ⊃ (x) Ex** \n" ); document.write( " Given\r \n" ); document.write( "\n" ); document.write( "**3. ~Em** \n" ); document.write( " Given\r \n" ); document.write( "\n" ); document.write( "**4. ~(x) Ex** \n" ); document.write( " Universal Instantiation (3)\r \n" ); document.write( "\n" ); document.write( "**5. ~[(∃x) (Ax ∨ Cx)]** \n" ); document.write( " Modus Tollens (2, 4)\r \n" ); document.write( "\n" ); document.write( "**6. ~[(∃x) (Ax ∨ Cx)] ≡ [~(∃x) Ax ∧ ~(∃x) Cx]** \n" ); document.write( " De Morgan's Law (Quantifier Form)\r \n" ); document.write( "\n" ); document.write( "**7. ~(∃x) Ax ∧ ~(∃x) Cx** \n" ); document.write( " Equivalence (5, 6)\r \n" ); document.write( "\n" ); document.write( "**8. ~(∃x) Ax** \n" ); document.write( " Simplification (7)\r \n" ); document.write( "\n" ); document.write( "**9. ~[(∃x) (Ax • Bx)]** \n" ); document.write( " Simplification (7)\r \n" ); document.write( "\n" ); document.write( "**10. ~(∃x) Ax ∨ ~[(∃x) Bx]** \n" ); document.write( " De Morgan's Law (Quantifier Form) (9)\r \n" ); document.write( "\n" ); document.write( "**11. ~(∃x) Ax** \n" ); document.write( " Simplification (10)\r \n" ); document.write( "\n" ); document.write( "**12. (∃x) (Cx ∨ Dx)** \n" ); document.write( " Disjunctive Syllogism (1, 11)\r \n" ); document.write( "\n" ); document.write( "**13. (∃x) Cx ∨ (∃x) Dx** \n" ); document.write( " Distributive Law (Quantifier Form) (12)\r \n" ); document.write( "\n" ); document.write( "**14. ~(∃x) Cx** \n" ); document.write( " Simplification (7)\r \n" ); document.write( "\n" ); document.write( "**15. (∃x) Dx** \n" ); document.write( " Disjunctive Syllogism (13, 14)\r \n" ); document.write( "\n" ); document.write( "**Therefore, (∃x) Dx**\r \n" ); document.write( "\n" ); document.write( "This derivation demonstrates that the conclusion (∃x) Dx can be derived from the given premises using the specified rules of inference and quantifier negation. \n" ); document.write( " \n" ); document.write( " |