document.write( "Question 1209061: Verify that the points (0,0), (a,0) and (c,d) are the vertices of an equilateral triangle. \r
\n" ); document.write( "\n" ); document.write( "Note: c = (a/2) and d = (a•sqrt{3})/2\r
\n" ); document.write( "\n" ); document.write( "Then show that the midpoints of the 3 sides are the vertices of a second equilateral triangle.
\n" ); document.write( "

Algebra.Com's Answer #848173 by textot(100)\"\" \"About 
You can put this solution on YOUR website!
**1. Verify Equilateral Triangle**\r
\n" ); document.write( "\n" ); document.write( "* **Points:**
\n" ); document.write( " * A: (0, 0)
\n" ); document.write( " * B: (a, 0)
\n" ); document.write( " * C: (c, d) = (a/2, (a√3)/2)\r
\n" ); document.write( "\n" ); document.write( "* **Distances:**
\n" ); document.write( " * AB = √[(a - 0)² + (0 - 0)²] = √a² = a
\n" ); document.write( " * BC = √[(a/2 - a)² + ((a√3)/2 - 0)²] = √[(-a/2)² + (a√3/2)²] = √(a²/4 + 3a²/4) = √(4a²/4) = a
\n" ); document.write( " * AC = √[(a/2 - 0)² + ((a√3)/2 - 0)²] = √[(a/2)² + (a√3/2)²] = √(a²/4 + 3a²/4) = √(4a²/4) = a\r
\n" ); document.write( "\n" ); document.write( "Since AB = BC = AC = a, the points A, B, and C form an equilateral triangle.\r
\n" ); document.write( "\n" ); document.write( "**2. Find Midpoints**\r
\n" ); document.write( "\n" ); document.write( "* **Midpoint of AB (M1):**
\n" ); document.write( " * [(0 + a)/2, (0 + 0)/2] = (a/2, 0)\r
\n" ); document.write( "\n" ); document.write( "* **Midpoint of BC (M2):**
\n" ); document.write( " * [(a + a/2)/2, (0 + (a√3)/2)/2] = (3a/4, (a√3)/4)\r
\n" ); document.write( "\n" ); document.write( "* **Midpoint of AC (M3):**
\n" ); document.write( " * [(0 + a/2)/2, (0 + (a√3)/2)/2] = (a/4, (a√3)/4)\r
\n" ); document.write( "\n" ); document.write( "**3. Verify Equilateral Triangle for Midpoints**\r
\n" ); document.write( "\n" ); document.write( "* **M1M2:**
\n" ); document.write( " * √[((3a/4) - (a/2))² + ((a√3)/4 - 0)²] = √[(a/4)² + (a√3/4)²] = √(a²/16 + 3a²/16) = √(4a²/16) = a/2\r
\n" ); document.write( "\n" ); document.write( "* **M2M3:**
\n" ); document.write( " * √[((a/4) - (3a/4))² + ((a√3)/4 - (a√3)/4)²] = √[(-a/2)² + 0²] = a/2\r
\n" ); document.write( "\n" ); document.write( "* **M3M1:**
\n" ); document.write( " * √[((a/2) - (a/4))² + (0 - (a√3)/4)²] = √[(a/4)² + (a√3/4)²] = √(a²/16 + 3a²/16) = a/2\r
\n" ); document.write( "\n" ); document.write( "Since M1M2 = M2M3 = M3M1 = a/2, the midpoints M1, M2, and M3 also form an equilateral triangle.\r
\n" ); document.write( "\n" ); document.write( "**Therefore, it is proven that if the points (0, 0), (a, 0), and (c, d) (where c = a/2 and d = (a√3)/2) are the vertices of an equilateral triangle, then the midpoints of the sides of this triangle also form an equilateral triangle.**
\n" ); document.write( "
\n" ); document.write( "
\n" );