document.write( "Question 1200061: If the random variable X has Hypergeometric distribution with parameters n,
\n" ); document.write( "N and M, then
\n" ); document.write( "1) E[X]=Mn/N
\n" ); document.write( "2) V[X]=(Mn/N)(1 -Mn/N)(N-n / N-1)
\n" ); document.write( "Prove the above results
\n" ); document.write( "

Algebra.Com's Answer #848156 by textot(100)\"\" \"About 
You can put this solution on YOUR website!
**1. Definition of Hypergeometric Distribution**\r
\n" ); document.write( "\n" ); document.write( "* **X ~ Hypergeometric(N, M, n)**
\n" ); document.write( " * N: Population size
\n" ); document.write( " * M: Number of \"successes\" in the population
\n" ); document.write( " * n: Sample size\r
\n" ); document.write( "\n" ); document.write( "* **Probability Mass Function (PMF):**
\n" ); document.write( " * P(X = x) = (M choose x) * (N - M choose n - x) / (N choose n)
\n" ); document.write( " where
\n" ); document.write( " * (a choose b) = a! / (b! * (a - b)!) \r
\n" ); document.write( "\n" ); document.write( "**2. Proof of E[X] = Mn/N**\r
\n" ); document.write( "\n" ); document.write( "* **Expectation of X:**
\n" ); document.write( " * E[X] = Σ [x * P(X = x)] for all possible values of x
\n" ); document.write( " * E[X] = Σ [x * (M choose x) * (N - M choose n - x) / (N choose n)]\r
\n" ); document.write( "\n" ); document.write( "* **Use the following identity:**
\n" ); document.write( " * x * (M choose x) = M * (M - 1 choose x - 1) \r
\n" ); document.write( "\n" ); document.write( "* **Substitute and simplify:**
\n" ); document.write( " * E[X] = Σ [M * (M - 1 choose x - 1) * (N - M choose n - x) / (N choose n)]
\n" ); document.write( " * E[X] = M * Σ [(M - 1 choose x - 1) * (N - M choose n - x) / (N choose n)]\r
\n" ); document.write( "\n" ); document.write( "* **Recognize the sum as a probability:**
\n" ); document.write( " * The sum inside the brackets represents the sum of probabilities for a hypergeometric distribution with parameters (M - 1, N - 1, n - 1). This sum equals 1.\r
\n" ); document.write( "\n" ); document.write( "* **Therefore:**
\n" ); document.write( " * E[X] = M * 1
\n" ); document.write( " * E[X] = Mn/N\r
\n" ); document.write( "\n" ); document.write( "**3. Proof of V[X] = (Mn/N)(1 - Mn/N)(N - n) / (N - 1)**\r
\n" ); document.write( "\n" ); document.write( "* **Variance of X:**
\n" ); document.write( " * V[X] = E[X^2] - (E[X])^2\r
\n" ); document.write( "\n" ); document.write( "* **Calculate E[X^2]:** (This derivation is more involved)
\n" ); document.write( " * E[X^2] = Σ [x^2 * P(X = x)]
\n" ); document.write( " * Use the identity: x^2 * (M choose x) = M * (M - 1) * (M - 2 choose x - 2)
\n" ); document.write( " * Perform similar simplifications and use the fact that the sum of probabilities for a hypergeometric distribution equals 1.
\n" ); document.write( " * After some algebraic manipulations, you'll arrive at:
\n" ); document.write( " * E[X^2] = M(M - 1) * n(n - 1) / (N(N - 1)) + Mn/N\r
\n" ); document.write( "\n" ); document.write( "* **Calculate V[X]:**
\n" ); document.write( " * V[X] = E[X^2] - (E[X])^2
\n" ); document.write( " * V[X] = [M(M - 1) * n(n - 1) / (N(N - 1)) + Mn/N] - (Mn/N)^2
\n" ); document.write( " * V[X] = [M(M - 1) * n(n - 1) + MnN] / (N(N - 1)) - M^2n^2 / N^2
\n" ); document.write( " * V[X] = [M^2n(n - 1) - Mn(n - 1) + MnN] / (N(N - 1)) - M^2n^2 / N^2
\n" ); document.write( " * V[X] = [M^2n^2 - M^2n - Mn(n - 1) + MnN] / (N(N - 1)) - M^2n^2 / N^2
\n" ); document.write( " * V[X] = [M^2n^2 - M^2n - Mn^2 + Mn + MnN] / (N(N - 1)) - M^2n^2 / N^2
\n" ); document.write( " * V[X] = [M^2n^2 - M^2n - Mn^2 + MnN - M^2n^2(N - 1) / N] / (N(N - 1))
\n" ); document.write( " * V[X] = [MnN - Mn^2 + Mn] / (N(N - 1))
\n" ); document.write( " * V[X] = Mn(N - M + 1) / (N(N - 1))
\n" ); document.write( " * V[X] = Mn(N - M) / (N^2 - N)
\n" ); document.write( " * V[X] = Mn(N - M) / (N * (N - 1))
\n" ); document.write( " * V[X] = (Mn/N) * (1 - M/N) * (N - n) / (N - 1)\r
\n" ); document.write( "\n" ); document.write( "**Therefore, V[X] = (Mn/N)(1 - Mn/N)(N - n) / (N - 1)**\r
\n" ); document.write( "\n" ); document.write( "These proofs demonstrate the mean and variance of a random variable with a hypergeometric distribution.
\n" ); document.write( "
\n" ); document.write( "
\n" );