document.write( "Question 1207925: Independent random samples of n1 = 18 and n2 = 13 observations were selected from two normal populations with equal variances.
\n" );
document.write( "DATA:-
\n" );
document.write( "__________________Population (IGNORE the lines - represents space)
\n" );
document.write( "__________________1______2 (IGNORE the lines - represents space)
\n" );
document.write( "Sample Size______18______13 (IGNORE the lines - represents space)
\n" );
document.write( "Sample Mean_____34.6_____32.1 (IGNORE the lines - represents space)
\n" );
document.write( "Sample Variance__4.5_____5.9 (IGNORE the lines - represents space)\r
\n" );
document.write( "\n" );
document.write( "(a) Find the rejection region for the test in part (a) for 𝛼 = 0.01. (If the test is one-tailed, enter NONE for the unused region. Round your answers to three decimal places.)
\n" );
document.write( "t > _________
\n" );
document.write( "t < _________\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "(b) Find the value of the test statistic. (Round your answer to three decimal places.)
\n" );
document.write( "t = _________\r
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #848147 by textot(100)![]() ![]() ![]() You can put this solution on YOUR website! **a) Find the rejection region for the test in part (a) for 𝛼 = 0.01.**\r \n" ); document.write( "\n" ); document.write( "* **Degrees of Freedom:** \n" ); document.write( " * df = n1 + n2 - 2 = 18 + 13 - 2 = 29\r \n" ); document.write( "\n" ); document.write( "* **Critical t-values:** \n" ); document.write( " * Since it's a two-tailed test with α = 0.01, we need to find the critical t-values that split the distribution into the middle 98% and the two 1% tails. \n" ); document.write( " * Using a t-distribution table or a calculator (like Python's scipy library), we find: \n" ); document.write( " * t > 2.756 \n" ); document.write( " * t < -2.756\r \n" ); document.write( "\n" ); document.write( "**b) Find the value of the test statistic.**\r \n" ); document.write( "\n" ); document.write( "1. **Calculate Pooled Variance:** \n" ); document.write( " * s_pooled^2 = ((n1 - 1) * s1^2 + (n2 - 1) * s2^2) / (n1 + n2 - 2) \n" ); document.write( " * s_pooled^2 = ((18 - 1) * 4.5 + (13 - 1) * 5.9) / (18 + 13 - 2) \n" ); document.write( " * s_pooled^2 = 5.14 \n" ); document.write( " * s_pooled = √5.14 ≈ 2.267\r \n" ); document.write( "\n" ); document.write( "2. **Calculate t-statistic:** \n" ); document.write( " * t = (x̄1 - x̄2) / (s_pooled * √(1/n1 + 1/n2)) \n" ); document.write( " * t = (34.6 - 32.1) / (2.267 * √(1/18 + 1/13)) \n" ); document.write( " * t ≈ 3.048\r \n" ); document.write( "\n" ); document.write( "**Therefore:**\r \n" ); document.write( "\n" ); document.write( "* **Rejection Region:** t > 2.756 and t < -2.756 \n" ); document.write( "* **Test Statistic:** t = 3.048 \n" ); document.write( " \n" ); document.write( " |