document.write( "Question 1200016: Grace's bakery specializes in giant cupcakes. Bach cardboard cupcake container is filled with batter and baked in the oven. The baked cupcake forms a perfect hemispherical on top of the container. The surface area of this is frosted. A clear plastic lid, identical in size and shape to the cupcake container, is then placed on top. These containers are designed such that R, =
\n" ); document.write( "R, and h - 2R. Given that 100 cm° of batter costs 94, 100 cm° of frosting costs
\n" ); document.write( "4
\n" ); document.write( "274, 100 cm? of cardboard costs 1.5¢, and 100 cm? of plastic costs 34, complete the tasks below on the next page.
\n" ); document.write( "The following formulas may be helpful:
\n" ); document.write( "Conical frustum:
\n" ); document.write( "Hemisphere:
\n" ); document.write( "SA = 277?
\n" ); document.write( "2
\n" ); document.write( "V=
\n" ); document.write( "S4 (sides only) =兀(号十 )s
\n" ); document.write( "V-三Th(R+R及十吗)
\n" ); document.write( "Create functions of R, which return the cost, in dollars, of ingredients, I, and packaging, P.
\n" ); document.write( "Approximate all coefficients to 4 decimal places.
\n" ); document.write( "Finc the volume of a baked cupcake if Grace wants 85% of the cost to go toward ingredients. Round to 2 decimal places.
\n" ); document.write( "Hints: Consider that.
\n" ); document.write( "15
\n" ); document.write( "Use the \"intersect\" graphing calculator tool to find R,.
\n" ); document.write( "c. Find the efficiency ratio for the packaging to the baked cupcake, to 2 decimal places.
\n" ); document.write( "38
\n" ); document.write( "

Algebra.Com's Answer #848133 by textot(100)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "**1. Define Functions**\r
\n" ); document.write( "\n" ); document.write( "* **Cost of Ingredients (I)**:\r
\n" ); document.write( "\n" ); document.write( " - Cost of batter:
\n" ); document.write( " - Volume of batter = Volume of hemisphere = (2/3) * π * R^3
\n" ); document.write( " - Cost per 100 cm³ = $0.09
\n" ); document.write( " - Cost of batter = (2/3) * π * R^3 * 0.09 / 100
\n" ); document.write( " - Cost of frosting:
\n" ); document.write( " - Surface area of hemisphere = 2 * π * R^2
\n" ); document.write( " - Cost per 100 cm² = $0.27
\n" ); document.write( " - Cost of frosting = 2 * π * R^2 * 0.27 / 100\r
\n" ); document.write( "\n" ); document.write( " - **I(R) = (0.0001885 * π * R^3) + (0.0054 * π * R^2)**\r
\n" ); document.write( "\n" ); document.write( "* **Cost of Packaging (P)**:\r
\n" ); document.write( "\n" ); document.write( " - Cost of cardboard:
\n" ); document.write( " - Surface area of cardboard = 2 * π * R * h + π * R^2
\n" ); document.write( " - Substitute h = 2R:
\n" ); document.write( " - Surface area = 2 * π * R * (2R) + π * R^2 = 5 * π * R^2
\n" ); document.write( " - Cost per 100 cm² = $0.015
\n" ); document.write( " - Cost of cardboard = 5 * π * R^2 * 0.015 / 100 \r
\n" ); document.write( "\n" ); document.write( " - Cost of plastic lid:
\n" ); document.write( " - Surface area of plastic lid = π * R^2
\n" ); document.write( " - Cost per 100 cm² = $0.03
\n" ); document.write( " - Cost of plastic lid = π * R^2 * 0.03 / 100\r
\n" ); document.write( "\n" ); document.write( " - **P(R) = (0.00075 * π * R^2) + (0.0003 * π * R^2) = 0.00105 * π * R^2**\r
\n" ); document.write( "\n" ); document.write( "**2. Find Volume for 85% Ingredient Cost**\r
\n" ); document.write( "\n" ); document.write( "* **Set up the equation:**
\n" ); document.write( " - I(R) / (I(R) + P(R)) = 0.85\r
\n" ); document.write( "\n" ); document.write( "* **Substitute I(R) and P(R):**
\n" ); document.write( " - [(0.0001885 * π * R^3) + (0.0054 * π * R^2)] /
\n" ); document.write( " [(0.0001885 * π * R^3) + (0.0054 * π * R^2) + (0.00105 * π * R^2)] = 0.85\r
\n" ); document.write( "\n" ); document.write( "* **Use a graphing calculator to find the intersection point:**
\n" ); document.write( " - Graph the left-hand side and the right-hand side of the equation.
\n" ); document.write( " - Find the x-coordinate (R) of the intersection point.\r
\n" ); document.write( "\n" ); document.write( "* **Calculate the volume of the cupcake:**
\n" ); document.write( " - Volume = (2/3) * π * R^3 \r
\n" ); document.write( "\n" ); document.write( "**3. Find Efficiency Ratio**\r
\n" ); document.write( "\n" ); document.write( "* **Efficiency Ratio = Volume of Cupcake / Volume of Packaging**\r
\n" ); document.write( "\n" ); document.write( " - Volume of Packaging:
\n" ); document.write( " - Consider the volume of the cardboard container as the packaging volume.
\n" ); document.write( " - Volume of container = π * R^2 * h = π * R^2 * (2R) = 2 * π * R^3\r
\n" ); document.write( "\n" ); document.write( " - Efficiency Ratio = [(2/3) * π * R^3] / [2 * π * R^3] = 1/3\r
\n" ); document.write( "\n" ); document.write( "**Therefore:**\r
\n" ); document.write( "\n" ); document.write( "* **Efficiency Ratio = 0.33**\r
\n" ); document.write( "\n" ); document.write( "**Note:**\r
\n" ); document.write( "\n" ); document.write( "* This solution provides the framework and steps. You'll need to use a graphing calculator to find the specific values for R and the volume of the cupcake.
\n" ); document.write( "* The efficiency ratio indicates that for every 1 unit of packaging volume, there are 0.33 units of cupcake volume.
\n" ); document.write( "**1. Define Functions for Cost**\r
\n" ); document.write( "\n" ); document.write( "* **Cost of Ingredients (I)**\r
\n" ); document.write( "\n" ); document.write( " * Cost of batter:
\n" ); document.write( " * Volume of batter = Volume of hemisphere = (2/3) * π * R^3
\n" ); document.write( " * Cost of batter = (2/3) * π * R^3 * (9 cents / 100 cm^3)
\n" ); document.write( " * Cost of batter = 0.0188 * R^3 \r
\n" ); document.write( "\n" ); document.write( " * Cost of frosting:
\n" ); document.write( " * Surface area of hemisphere = 2 * π * R^2
\n" ); document.write( " * Cost of frosting = 2 * π * R^2 * (27 cents / 100 cm^2)
\n" ); document.write( " * Cost of frosting = 0.1696 * R^2\r
\n" ); document.write( "\n" ); document.write( " * **I(R) = 0.0188 * R^3 + 0.1696 * R^2** \r
\n" ); document.write( "\n" ); document.write( "* **Cost of Packaging (P)**\r
\n" ); document.write( "\n" ); document.write( " * Cost of cardboard:
\n" ); document.write( " * Surface area of cardboard = 2 * π * R^2
\n" ); document.write( " * Cost of cardboard = 2 * π * R^2 * (1.5 cents / 100 cm^2)
\n" ); document.write( " * Cost of cardboard = 0.0094 * R^2\r
\n" ); document.write( "\n" ); document.write( " * Cost of plastic lid:
\n" ); document.write( " * Surface area of plastic = 2 * π * R^2
\n" ); document.write( " * Cost of plastic = 2 * π * R^2 * (3 cents / 100 cm^2)
\n" ); document.write( " * Cost of plastic = 0.0189 * R^2\r
\n" ); document.write( "\n" ); document.write( " * **P(R) = 0.0094 * R^2 + 0.0189 * R^2 = 0.0283 * R^2**\r
\n" ); document.write( "\n" ); document.write( "**2. Find the Volume for 85% Ingredient Cost**\r
\n" ); document.write( "\n" ); document.write( "* **Set up the equation:**
\n" ); document.write( " * I(R) / (I(R) + P(R)) = 0.85\r
\n" ); document.write( "\n" ); document.write( "* **Substitute the functions:**
\n" ); document.write( " * (0.0188 * R^3 + 0.1696 * R^2) / (0.0188 * R^3 + 0.1696 * R^2 + 0.0283 * R^2) = 0.85\r
\n" ); document.write( "\n" ); document.write( "* **Simplify and solve for R:**
\n" ); document.write( " * 0.0188 * R^3 + 0.1696 * R^2 = 0.85 * (0.0188 * R^3 + 0.1979 * R^2)
\n" ); document.write( " * 0.00254 * R^3 = 0.0265 * R^2
\n" ); document.write( " * R = 0.0265 / 0.00254
\n" ); document.write( " * R ≈ 10.43 cm\r
\n" ); document.write( "\n" ); document.write( "* **Calculate the volume of the cupcake:**
\n" ); document.write( " * Volume = (2/3) * π * R^3 = (2/3) * π * (10.43 cm)^3
\n" ); document.write( " * Volume ≈ 2380.94 cm^3\r
\n" ); document.write( "\n" ); document.write( "**3. Find the Efficiency Ratio**\r
\n" ); document.write( "\n" ); document.write( "* **Efficiency Ratio = Volume of Cupcake / Volume of Packaging**\r
\n" ); document.write( "\n" ); document.write( " * Volume of Packaging = Volume of Hemisphere + Volume of Cylinder (height = R)
\n" ); document.write( " * Volume of Cylinder = π * R^2 * h = π * R^2 * 2R = 2 * π * R^3
\n" ); document.write( " * Volume of Packaging = (2/3) * π * R^3 + 2 * π * R^3 = (8/3) * π * R^3\r
\n" ); document.write( "\n" ); document.write( " * Efficiency Ratio = [(2/3) * π * R^3] / [(8/3) * π * R^3] = 1/4
\n" ); document.write( " * Efficiency Ratio = 0.25\r
\n" ); document.write( "\n" ); document.write( "**Therefore:**\r
\n" ); document.write( "\n" ); document.write( "* **I(R) = 0.0188 * R^3 + 0.1696 * R^2**
\n" ); document.write( "* **P(R) = 0.0283 * R^2**
\n" ); document.write( "* **Volume of Cupcake for 85% Ingredient Cost ≈ 2380.94 cm^3**
\n" ); document.write( "* **Efficiency Ratio = 0.25** \r
\n" ); document.write( "\n" ); document.write( "**Note:**\r
\n" ); document.write( "\n" ); document.write( "* This solution assumes the cupcake container is a perfect cylinder.
\n" ); document.write( "* The \"intersect\" graphing calculator tool can be used to find the value of R that satisfies the equation in step 2 more accurately.
\n" ); document.write( "
\n" ); document.write( "
\n" );