document.write( "Question 1209282: 1. (~(~Z v H) ⊃ ~T)
\n" ); document.write( "2. ((S ⊃ Z) ⊃ ~H)
\n" ); document.write( "∴ (Z ⊃ ~T)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "what's the next steps for this?
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #848098 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Here is one way to do a derivation using a conditional proof.
\n" ); document.write( "I'll use arrow symbols in place of horseshoe symbols.
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
NumberStatementLine(s) UsedReason
1~(~Z v H) --> ~T
2(S --> Z) --> ~H
:.Z --> ~T
3ZAssumption for Conditional Proof
4(Z & ~H) --> ~T1De Morgan’s Law
5Z --> (~H --> ~T)4Exportation
6~H --> ~T5,3Modus Ponens
7(S --> Z) --> ~T2,6Hypothetical Syllogism
8(~S v Z) --> ~T7Material Implication
9Z v ~S3Addition
10~S v Z9Commutation
11~T8,10Modus Ponens
12Z --> ~T3 - 11Conditional Proof

\n" ); document.write( "I started with assuming Z is the case (line 3). Then I used the logic rules of inference and replacement to arrive at ~T (line 11)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The assumption Z leading to ~T then allows us to prove Z --> ~T is a valid conclusion. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Here's a way to do it using a direct proof.
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
NumberStatementLine(s) UsedReason
1~(~Z v H) --> ~T
2(S --> Z) --> ~H
:.Z --> ~T
3(~S v Z) --> ~H2Material Implication
4~(~S v Z) v ~H3Material Implication
5(S & ~Z) v ~H4De Morgan’s Law
6(S v ~H) & (~Z v ~H)5Distribution
7(~Z v ~H) & (S v ~H)6Commutation
8~Z v ~H7Simplification
9Z --> ~H8Material Implication
10(Z & ~H) --> ~T1De Morgan’s Law
11(~H & Z) --> ~T10Commutation
12~H --> (Z --> ~T)11Exportation
13Z --> (Z --> ~T)9, 12Hypothetical Syllogism
14(Z & Z) --> ~T13Exportation
15Z --> ~T14Tautology

\n" ); document.write( "There might be a much more efficient pathway, but I'm not able to think of it right now.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Caution: Tutor Edwin makes the mistake of using the Addition Rule on part of an expression rather than the entire thing.
\n" ); document.write( "It is NOT valid to go from ~(T ⊃ ~Z) to ~(T ⊃ (~Z v H))
\n" ); document.write( "Notice in this rule set the \"addition\" property is in the \"rules of inference\" sub-block. The rules of inference must apply to the entire line. In contrast a rule of replacement can apply to a portion of a line.
\n" ); document.write( "
\n" ); document.write( "
\n" );