document.write( "Question 1200529: Consider the function f(x) = x^2 + 9\r
\n" );
document.write( "\n" );
document.write( "a. Demonstrate how to find the average rate of change from x= -3 to x= 1.\r
\n" );
document.write( "\n" );
document.write( "b. Demonstrate algebraically how to find the simplification of f(a+h)-f(a)/h for the given f(x).\r
\n" );
document.write( "\n" );
document.write( "c. Let -3 = a, and 1 = a+h, find h. Put that into the simplification in part b. Compare it to the answer for part a. What do you notice? \n" );
document.write( "
Algebra.Com's Answer #848066 by GingerAle(43)![]() ![]() ![]() You can put this solution on YOUR website! **a. Find the Average Rate of Change**\r \n" ); document.write( "\n" ); document.write( "* **Calculate f(-3):** \n" ); document.write( " f(-3) = (-3)² + 9 = 9 + 9 = 18\r \n" ); document.write( "\n" ); document.write( "* **Calculate f(1):** \n" ); document.write( " f(1) = (1)² + 9 = 1 + 9 = 10\r \n" ); document.write( "\n" ); document.write( "* **Calculate the Average Rate of Change:** \n" ); document.write( " Average Rate of Change = (f(1) - f(-3)) / (1 - (-3)) \n" ); document.write( " = (10 - 18) / (1 + 3) \n" ); document.write( " = -8 / 4 \n" ); document.write( " = -2\r \n" ); document.write( "\n" ); document.write( "**Therefore, the average rate of change of f(x) from x = -3 to x = 1 is -2.**\r \n" ); document.write( "\n" ); document.write( "**b. Simplify f(a+h) - f(a) / h**\r \n" ); document.write( "\n" ); document.write( "1. **Find f(a+h):** \n" ); document.write( " f(a+h) = (a+h)² + 9 \n" ); document.write( " = a² + 2ah + h² + 9\r \n" ); document.write( "\n" ); document.write( "2. **Find f(a):** \n" ); document.write( " f(a) = a² + 9\r \n" ); document.write( "\n" ); document.write( "3. **Substitute and Simplify:** \n" ); document.write( " (f(a+h) - f(a)) / h \n" ); document.write( " = [(a² + 2ah + h² + 9) - (a² + 9)] / h \n" ); document.write( " = (a² + 2ah + h² + 9 - a² - 9) / h \n" ); document.write( " = (2ah + h²) / h \n" ); document.write( " = 2a + h\r \n" ); document.write( "\n" ); document.write( "**Therefore, (f(a+h) - f(a)) / h simplifies to 2a + h.**\r \n" ); document.write( "\n" ); document.write( "**c. Find h and Substitute**\r \n" ); document.write( "\n" ); document.write( "* Given: \n" ); document.write( " * -3 = a \n" ); document.write( " * 1 = a + h\r \n" ); document.write( "\n" ); document.write( "* Find h: \n" ); document.write( " 1 = -3 + h \n" ); document.write( " h = 4\r \n" ); document.write( "\n" ); document.write( "* Substitute h = 4 and a = -3 into the simplified expression: \n" ); document.write( " 2a + h = 2(-3) + 4 = -6 + 4 = -2\r \n" ); document.write( "\n" ); document.write( "**Observation:**\r \n" ); document.write( "\n" ); document.write( "The result of the simplification in part (c) (-2) is the same as the average rate of change calculated in part (a). \r \n" ); document.write( "\n" ); document.write( "**Interpretation:**\r \n" ); document.write( "\n" ); document.write( "This demonstrates that the simplification of (f(a+h) - f(a)) / h represents the slope of the secant line between the points (a, f(a)) and (a+h, f(a+h)) on the graph of f(x). In this case, it gives the slope of the secant line between the points (-3, f(-3)) and (1, f(1)). \n" ); document.write( " \n" ); document.write( " |