document.write( "Question 1207903: Independent random samples of n1 = 18 and n2 = 13 observations were selected from two normal populations with equal variances.
\n" );
document.write( "DATA:-
\n" );
document.write( "____________________Population (Ignore the lines - it represents space)
\n" );
document.write( "____________________ 1_____2 (Ignore the lines - it represents space)
\n" );
document.write( "Sample Size_________18____13 (Ignore the lines - it represents space)
\n" );
document.write( "Sample Mean________34.6___32.1 (Ignore the lines - it represents space)
\n" );
document.write( "Sample Variance_____4.5___5.9 (Ignore the lines - it represents space)\r
\n" );
document.write( "\n" );
document.write( "(a) Find the rejection region for the test in part (a) for 𝛼 = 0.01. (If the test is one-tailed, enter NONE for the unused region. Round your answers to three decimal places.)
\n" );
document.write( "t > _______
\n" );
document.write( "t < _______\r
\n" );
document.write( "\n" );
document.write( "(b) Find the value of the test statistic. (Round your answer to three decimal places.)
\n" );
document.write( "t = \r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "(c) Find the approximate p-value for the test.
\n" );
document.write( "p-value < 0.010
\n" );
document.write( "i) 0.010 < p-value < 0.020
\n" );
document.write( "ii) 0.020 < p-value < 0.050
\n" );
document.write( "iii) 0.050 < p-value < 0.100
\n" );
document.write( "iv) 0.100 < p-value < 0.200
\n" );
document.write( "v) p-value < 0.200 \n" );
document.write( "
Algebra.Com's Answer #848015 by asinus(45)![]() ![]() ![]() You can put this solution on YOUR website! To address this hypothesis testing problem, we'll break down the process step-by-step. Here are the steps for parts (a), (b), and (c):\r \n" ); document.write( "\n" ); document.write( "### (a) Find the Rejection Region for the Test\r \n" ); document.write( "\n" ); document.write( "In hypothesis testing, the rejection region is determined based on the significance level (α). Given α = 0.01, we need to find critical values for the t-distribution with the appropriate degrees of freedom.\r \n" ); document.write( "\n" ); document.write( "1. **Degrees of freedom (df)**: Since we have two samples, we can calculate the degrees of freedom using the formula: \n" ); document.write( " \[ \n" ); document.write( " df = n_1 + n_2 - 2 \n" ); document.write( " \] \n" ); document.write( " where \(n_1 = 18\) and \(n_2 = 13\). Therefore, \n" ); document.write( " \[ \n" ); document.write( " df = 18 + 13 - 2 = 29 \n" ); document.write( " \]\r \n" ); document.write( "\n" ); document.write( "2. **Determine the critical t-value**: Since we're not told whether this is a one-tailed or two-tailed test, I'll assume it's a two-tailed test for the sake of this example. For α = 0.01 (which is split between the two tails), each tail would contain 0.005. You can find the critical t-value using a t-table or a calculator for \(df = 29\) and α/2 = 0.005.\r \n" ); document.write( "\n" ); document.write( " Using a t-table or calculator, you would find: \n" ); document.write( " - Critical t values for df = 29 at the 0.005 level.\r \n" ); document.write( "\n" ); document.write( " For a two-tailed test: \n" ); document.write( " - \(t < t_{\alpha/2}\) (negative critical value) and \(t > t_{(1-\alpha/2)}\) (positive critical value). \n" ); document.write( " \n" ); document.write( " Let's assume that the t-table shows critical values of: \n" ); document.write( " \[ \n" ); document.write( " t_{\alpha/2} \approx \pm 2.756 \n" ); document.write( " \] \n" ); document.write( " Thus, the rejection region will be: \n" ); document.write( " \[ \n" ); document.write( " t < -2.756 \quad \text{and} \quad t > 2.756 \n" ); document.write( " \]\r \n" ); document.write( "\n" ); document.write( "3. **Final Result**: \n" ); document.write( " - For the rejection region: \n" ); document.write( " - **t > 2.756** \n" ); document.write( " - **t < -2.756** \r \n" ); document.write( "\n" ); document.write( "### (b) Find the Value of the Test Statistic\r \n" ); document.write( "\n" ); document.write( "To compute the t-statistic, we can use the following formula for two independent samples: \n" ); document.write( "\[ \n" ); document.write( "t = \frac{\bar{X_1} - \bar{X_2}}{S_p\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \n" ); document.write( "\] \n" ); document.write( "where: \n" ); document.write( "- \(\bar{X_1} = 34.6\) (mean of the first sample) \n" ); document.write( "- \(\bar{X_2} = 32.1\) (mean of the second sample) \n" ); document.write( "- \(S_p\) is the pooled standard deviation, calculated as: \n" ); document.write( "\[ \n" ); document.write( "S_p = \sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}} \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "Given: \n" ); document.write( "- Sample variance \(S_1^2 = 4.5\) \n" ); document.write( "- Sample variance \(S_2^2 = 5.9\)\r \n" ); document.write( "\n" ); document.write( "1. Calculate \(S_p\): \n" ); document.write( " \[ \n" ); document.write( " S_p = \sqrt{\frac{(18 - 1) \cdot 4.5 + (13 - 1) \cdot 5.9}{18 + 13 - 2}} = \sqrt{\frac{17 \cdot 4.5 + 12 \cdot 5.9}{29}} \n" ); document.write( " \] \n" ); document.write( " \[ \n" ); document.write( " = \sqrt{\frac{76.5 + 70.8}{29}} = \sqrt{\frac{147.3}{29}} \approx \sqrt{5.08} \approx 2.253 \n" ); document.write( " \]\r \n" ); document.write( "\n" ); document.write( "2. Now, substitute back into the t formula: \n" ); document.write( "\[ \n" ); document.write( "t = \frac{34.6 - 32.1}{2.253\sqrt{\frac{1}{18} + \frac{1}{13}}} \n" ); document.write( "\] \n" ); document.write( "Calculate the individual components: \n" ); document.write( "\[ \n" ); document.write( "\sqrt{\frac{1}{18} + \frac{1}{13}} = \sqrt{0.05556 + 0.07692} = \sqrt{0.13248} \approx 0.363 \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "And now find \(t\): \n" ); document.write( "\[ \n" ); document.write( "t = \frac{2.5}{2.253 \times 0.363} \approx \frac{2.5}{0.817} \approx 3.059 \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "So: \n" ); document.write( "\[ \n" ); document.write( "t \approx 3.059 \quad \text{(rounded to three decimal places)} \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "### (c) Find the Approximate p-value for the Test\r \n" ); document.write( "\n" ); document.write( "To find the p-value associated with the test statistic \(t \approx 3.059\) and \(df = 29\):\r \n" ); document.write( "\n" ); document.write( "1. Because this is a one-tailed test, you would look up the tail probability of \(t = 3.059\) in the t-distribution table or use statistical software/calculator.\r \n" ); document.write( "\n" ); document.write( "2. Generally, for values beyond \(t > 2.756\), we know that the p-value will be less than alpha = 0.01. Thus, we can check ranges. For \(t \approx 3.059\), it is likely to be in the range of < 0.01.\r \n" ); document.write( "\n" ); document.write( "After checking the statistical tables or calculations, we find that: \n" ); document.write( "\[ \n" ); document.write( "\text{p-value} < 0.010 \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "### Conclusion\r \n" ); document.write( "\n" ); document.write( "So, your answers would be: \n" ); document.write( "- (a) \( t > 2.756 \); \( t < -2.756 \) \n" ); document.write( "- (b) \( t = 3.059 \) \n" ); document.write( "- (c) p-value < 0.010\r \n" ); document.write( "\n" ); document.write( "Feel free to ask if you have any further questions or need clarification on any of the steps! \n" ); document.write( " |