document.write( "Question 1207013: 4. Discrete independent random variables X and Y are given by the following laws of distribution:
\n" );
document.write( "X 0 3 Y - 2 - 1 2
\n" );
document.write( "P 0,3 0,7 P 0,2 0,4 0,4
\n" );
document.write( "Find M (X + Y) by two ways: 1) composing the law of distribution of X + Y; 2) using the property: M (X + Y) = M (X) + M (Y). \n" );
document.write( "
Algebra.Com's Answer #847996 by ElectricPavlov(122)![]() ![]() ![]() You can put this solution on YOUR website! We are tasked with calculating the expected value \( M(X + Y) \) by two methods. Let us proceed step by step.\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "### **Step 1: Distribution Laws** \n" ); document.write( "#### Distribution of \( X \): \n" ); document.write( "\[ \n" ); document.write( "X: \quad 0, \, 3 \quad \text{with probabilities } \quad P(X = 0) = 0.3, \, P(X = 3) = 0.7. \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "#### Distribution of \( Y \): \n" ); document.write( "\[ \n" ); document.write( "Y: \quad -2, \, -1, \, 2 \quad \text{with probabilities } \quad P(Y = -2) = 0.2, \, P(Y = -1) = 0.4, \, P(Y = 2) = 0.4. \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "### **Step 2: Method 1 - Composing the Law of Distribution for \( X + Y \)** \n" ); document.write( "Since \( X \) and \( Y \) are independent, the probability of any combination \( (X, Y) \) is given by the product of their probabilities: \n" ); document.write( "\[ \n" ); document.write( "P(X + Y = z) = \sum_{(x, y): x + y = z} P(X = x) \cdot P(Y = y). \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "#### Compute Possible Values of \( X + Y \): \n" ); document.write( "- If \( X = 0 \): \n" ); document.write( " \[ \n" ); document.write( " X + Y \in \{-2, -1, 2\} \quad \text{(corresponding to \( Y = -2, -1, 2 \))}. \n" ); document.write( " \] \n" ); document.write( "- If \( X = 3 \): \n" ); document.write( " \[ \n" ); document.write( " X + Y \in \{1, 2, 5\} \quad \text{(corresponding to \( Y = -2, -1, 2 \))}. \n" ); document.write( " \]\r \n" ); document.write( "\n" ); document.write( "Thus, the possible values of \( X + Y \) are: \n" ); document.write( "\[ \n" ); document.write( "\{-2, -1, 1, 2, 5\}. \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "#### Compute Probabilities for Each Value of \( X + Y \): \n" ); document.write( "- For \( X + Y = -2 \): \n" ); document.write( " \[ \n" ); document.write( " P(X + Y = -2) = P(X = 0) \cdot P(Y = -2) = 0.3 \cdot 0.2 = 0.06. \n" ); document.write( " \] \n" ); document.write( "- For \( X + Y = -1 \): \n" ); document.write( " \[ \n" ); document.write( " P(X + Y = -1) = P(X = 0) \cdot P(Y = -1) = 0.3 \cdot 0.4 = 0.12. \n" ); document.write( " \] \n" ); document.write( "- For \( X + Y = 1 \): \n" ); document.write( " \[ \n" ); document.write( " P(X + Y = 1) = P(X = 3) \cdot P(Y = -2) = 0.7 \cdot 0.2 = 0.14. \n" ); document.write( " \] \n" ); document.write( "- For \( X + Y = 2 \): \n" ); document.write( " \[ \n" ); document.write( " P(X + Y = 2) = P(X = 0) \cdot P(Y = 2) + P(X = 3) \cdot P(Y = -1) = (0.3 \cdot 0.4) + (0.7 \cdot 0.4) = 0.12 + 0.28 = 0.4. \n" ); document.write( " \] \n" ); document.write( "- For \( X + Y = 5 \): \n" ); document.write( " \[ \n" ); document.write( " P(X + Y = 5) = P(X = 3) \cdot P(Y = 2) = 0.7 \cdot 0.4 = 0.28. \n" ); document.write( " \]\r \n" ); document.write( "\n" ); document.write( "#### Distribution of \( X + Y \): \n" ); document.write( "\[ \n" ); document.write( "X + Y: \quad -2, \, -1, \, 1, \, 2, \, 5 \quad \text{with probabilities } \quad 0.06, \, 0.12, \, 0.14, \, 0.4, \, 0.28. \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "#### Compute \( M(X + Y) \): \n" ); document.write( "The expected value is: \n" ); document.write( "\[ \n" ); document.write( "M(X + Y) = \sum_{z} z \cdot P(X + Y = z). \n" ); document.write( "\] \n" ); document.write( "Substitute: \n" ); document.write( "\[ \n" ); document.write( "M(X + Y) = (-2)(0.06) + (-1)(0.12) + (1)(0.14) + (2)(0.4) + (5)(0.28). \n" ); document.write( "\] \n" ); document.write( "\[ \n" ); document.write( "M(X + Y) = -0.12 - 0.12 + 0.14 + 0.8 + 1.4 = 2.1. \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "### **Step 3: Method 2 - Using the Property \( M(X + Y) = M(X) + M(Y) \)** \n" ); document.write( "#### Compute \( M(X) \): \n" ); document.write( "\[ \n" ); document.write( "M(X) = \sum_{x} x \cdot P(X = x). \n" ); document.write( "\] \n" ); document.write( "\[ \n" ); document.write( "M(X) = (0)(0.3) + (3)(0.7) = 2.1. \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "#### Compute \( M(Y) \): \n" ); document.write( "\[ \n" ); document.write( "M(Y) = \sum_{y} y \cdot P(Y = y). \n" ); document.write( "\] \n" ); document.write( "\[ \n" ); document.write( "M(Y) = (-2)(0.2) + (-1)(0.4) + (2)(0.4). \n" ); document.write( "\] \n" ); document.write( "\[ \n" ); document.write( "M(Y) = -0.4 - 0.4 + 0.8 = 0. \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "#### Compute \( M(X + Y) \): \n" ); document.write( "\[ \n" ); document.write( "M(X + Y) = M(X) + M(Y) = 2.1 + 0 = 2.1. \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "### **Final Answer**: \n" ); document.write( "\[ \n" ); document.write( "M(X + Y) = \boxed{2.1}. \n" ); document.write( "\] \n" ); document.write( " |