document.write( "Question 1204126: Let X and Y be jointly normal random variables with parameters µ_X = 1, (σ_X)^2= 1, µ_Y = 0, (σ_Y)^2= 4, and ρ = 1/2.
\n" ); document.write( "(a) Find P(2X + Y < 3).
\n" ); document.write( "(b) Find P(Y > 1|X = 2).
\n" ); document.write( "(c) Find conditional expectation of Y given X = 2.
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #847992 by ElectricPavlov(122)\"\" \"About 
You can put this solution on YOUR website!
**a) Find P(2X + Y < 3)**\r
\n" ); document.write( "\n" ); document.write( "* **Define a new random variable:** Let Z = 2X + Y \r
\n" ); document.write( "\n" ); document.write( "* **Find the mean and variance of Z:**\r
\n" ); document.write( "\n" ); document.write( " * E[Z] = E[2X + Y] = 2E[X] + E[Y] = 2(1) + 0 = 2
\n" ); document.write( " * Var(Z) = Var(2X + Y) = 4Var(X) + Var(Y) + 2 * 2 * Cov(X, Y)
\n" ); document.write( " * Cov(X, Y) = ρ * σ_X * σ_Y = (1/2) * 1 * 2 = 1
\n" ); document.write( " * Var(Z) = 4 * 1 + 4 + 2 * 1 = 10\r
\n" ); document.write( "\n" ); document.write( "* **Determine the distribution of Z:**\r
\n" ); document.write( "\n" ); document.write( " * Since X and Y are jointly normal, any linear combination of them (like Z) is also normally distributed.\r
\n" ); document.write( "\n" ); document.write( "* **Standardize Z:**\r
\n" ); document.write( "\n" ); document.write( " * Let W = (Z - E[Z]) / sqrt(Var(Z))
\n" ); document.write( " * W = (Z - 2) / sqrt(10)
\n" ); document.write( " * W follows a standard normal distribution (N(0, 1))\r
\n" ); document.write( "\n" ); document.write( "* **Calculate the probability:**\r
\n" ); document.write( "\n" ); document.write( " * P(2X + Y < 3) = P(Z < 3)
\n" ); document.write( " * P(Z < 3) = P( (Z - 2) / sqrt(10) < (3 - 2) / sqrt(10) )
\n" ); document.write( " * P(Z < 3) = P(W < 1 / sqrt(10))
\n" ); document.write( " * Use a standard normal distribution table or software to find P(W < 1 / sqrt(10)) \r
\n" ); document.write( "\n" ); document.write( "**b) Find P(Y > 1 | X = 2)**\r
\n" ); document.write( "\n" ); document.write( "* **Conditional Distribution of Y given X:**\r
\n" ); document.write( "\n" ); document.write( " * When X and Y are jointly normal, the conditional distribution of Y given X is also normal.
\n" ); document.write( " * The conditional mean of Y given X is:
\n" ); document.write( " * E[Y | X] = μ_Y + ρ * (σ_Y / σ_X) * (X - μ_X)
\n" ); document.write( " * E[Y | X = 2] = 0 + (1/2) * (2 / 1) * (2 - 1) = 1\r
\n" ); document.write( "\n" ); document.write( " * The conditional variance of Y given X is:
\n" ); document.write( " * Var(Y | X) = σ_Y² * (1 - ρ²)
\n" ); document.write( " * Var(Y | X) = 4 * (1 - (1/2)²) = 4 * (3/4) = 3\r
\n" ); document.write( "\n" ); document.write( "* **Calculate the probability:**\r
\n" ); document.write( "\n" ); document.write( " * P(Y > 1 | X = 2) = P( (Y - E[Y | X = 2]) / sqrt(Var(Y | X)) > (1 - 1) / sqrt(3) )
\n" ); document.write( " * P(Y > 1 | X = 2) = P(Z > 0)
\n" ); document.write( " * where Z is a standard normal random variable.
\n" ); document.write( " * P(Y > 1 | X = 2) = 0.5 \r
\n" ); document.write( "\n" ); document.write( "**c) Find the conditional expectation of Y given X = 2**\r
\n" ); document.write( "\n" ); document.write( "* As calculated in part (b):
\n" ); document.write( " * E[Y | X = 2] = 1\r
\n" ); document.write( "\n" ); document.write( "**In summary:**\r
\n" ); document.write( "\n" ); document.write( "* **(a) P(2X + Y < 3)** requires standardizing the linear combination of X and Y and then using a standard normal distribution table.
\n" ); document.write( "* **(b) P(Y > 1 | X = 2)** utilizes the properties of the conditional distribution of Y given X in a jointly normal distribution.
\n" ); document.write( "* **(c) The conditional expectation of Y given X = 2** is calculated directly using the formula for the conditional mean.\r
\n" ); document.write( "\n" ); document.write( "I hope this comprehensive explanation is helpful!
\n" ); document.write( "
\n" ); document.write( "
\n" );