document.write( "Question 1205173: Consider the following system of linear equations
\n" ); document.write( "𝑥 + 3𝑦 + 2𝑧 − 𝑤 = −1
\n" ); document.write( "−3𝑥 − 7𝑦 + (𝑝 − 6)𝑧 + 2𝑤 = 1
\n" ); document.write( "2𝑥 + 𝑝^2𝑧 + 𝑝𝑤 = 𝑞^2
\n" ); document.write( "where 𝑝 and 𝑞 are real numbers.
\n" ); document.write( "Using Gaussian elimination, determine all possible values of 𝑝 and 𝑞 such that the system has infinitely many solutions with two free variables and solve the systems
\n" ); document.write( "

Algebra.Com's Answer #847979 by ElectricPavlov(122)\"\" \"About 
You can put this solution on YOUR website!
**1. Set up the Augmented Matrix**\r
\n" ); document.write( "\n" ); document.write( "The given system of linear equations can be represented by the following augmented matrix:\r
\n" ); document.write( "\n" ); document.write( "```
\n" ); document.write( "[ 1 3 2 -1 | -1 ]
\n" ); document.write( "[-3 -7 p-6 2 | 1 ]
\n" ); document.write( "[ 2 0 p^2 p | q^2 ]
\n" ); document.write( "```\r
\n" ); document.write( "\n" ); document.write( "**2. Perform Row Operations**\r
\n" ); document.write( "\n" ); document.write( "* **R2 = R2 + 3R1:**
\n" ); document.write( " ```
\n" ); document.write( " [ 1 3 2 -1 | -1 ]
\n" ); document.write( " [ 0 2 p -1 | -2 ]
\n" ); document.write( " [ 2 0 p^2 p | q^2 ]
\n" ); document.write( " ```\r
\n" ); document.write( "\n" ); document.write( "* **R3 = R3 - 2R1:**
\n" ); document.write( " ```
\n" ); document.write( " [ 1 3 2 -1 | -1 ]
\n" ); document.write( " [ 0 2 p -1 | -2 ]
\n" ); document.write( " [ 0 -6 p^2-4 p+2 | q^2+2 ]
\n" ); document.write( " ```\r
\n" ); document.write( "\n" ); document.write( "* **R3 = R3 + 3R2:**
\n" ); document.write( " ```
\n" ); document.write( " [ 1 3 2 -1 | -1 ]
\n" ); document.write( " [ 0 2 p -1 | -2 ]
\n" ); document.write( " [ 0 0 p^2+3p-4 p-1 | q^2-4 ]
\n" ); document.write( " ```\r
\n" ); document.write( "\n" ); document.write( "**3. Analyze for Infinitely Many Solutions**\r
\n" ); document.write( "\n" ); document.write( "For the system to have infinitely many solutions with two free variables, the last row of the augmented matrix must be a row of zeros. This implies:\r
\n" ); document.write( "\n" ); document.write( "* p^2 + 3p - 4 = 0
\n" ); document.write( "* p - 1 = 0
\n" ); document.write( "* q^2 - 4 = 0\r
\n" ); document.write( "\n" ); document.write( "**4. Solve for p and q**\r
\n" ); document.write( "\n" ); document.write( "* **p^2 + 3p - 4 = 0**
\n" ); document.write( " * (p + 4)(p - 1) = 0
\n" ); document.write( " * p = -4 or p = 1\r
\n" ); document.write( "\n" ); document.write( "* **p - 1 = 0**
\n" ); document.write( " * p = 1\r
\n" ); document.write( "\n" ); document.write( "* **q^2 - 4 = 0**
\n" ); document.write( " * q = ±2\r
\n" ); document.write( "\n" ); document.write( "Since we need all conditions to be satisfied simultaneously, the only possible values for p and q are:\r
\n" ); document.write( "\n" ); document.write( "* **p = 1**
\n" ); document.write( "* **q = 2 or q = -2**\r
\n" ); document.write( "\n" ); document.write( "**5. Solve the System for p = 1, q = 2 (or q = -2)**\r
\n" ); document.write( "\n" ); document.write( "* Substitute p = 1 into the row-echelon form of the augmented matrix:
\n" ); document.write( " ```
\n" ); document.write( " [ 1 3 2 -1 | -1 ]
\n" ); document.write( " [ 0 2 1 -1 | -2 ]
\n" ); document.write( " [ 0 0 0 0 | 0 ]
\n" ); document.write( " ```\r
\n" ); document.write( "\n" ); document.write( "* Let z = s and w = t (where s and t are free variables).
\n" ); document.write( "* From the second row: 2y + s - t = -2
\n" ); document.write( " => y = (-s + t - 2)/2\r
\n" ); document.write( "\n" ); document.write( "* From the first row: x + 3y + 2z - w = -1
\n" ); document.write( " => x + 3[(-s + t - 2)/2] + 2s - t = -1
\n" ); document.write( " => x = (s - t - 1)/2\r
\n" ); document.write( "\n" ); document.write( "**Therefore, the general solution for p = 1 and q = ±2 is:**\r
\n" ); document.write( "\n" ); document.write( "* x = (s - t - 1)/2
\n" ); document.write( "* y = (-s + t - 2)/2
\n" ); document.write( "* z = s
\n" ); document.write( "* w = t\r
\n" ); document.write( "\n" ); document.write( "where s and t are arbitrary real numbers.\r
\n" ); document.write( "\n" ); document.write( "**In summary:**\r
\n" ); document.write( "\n" ); document.write( "* The system of linear equations has infinitely many solutions with two free variables only when p = 1 and q = 2 or q = -2.
\n" ); document.write( "* The general solution for these values of p and q is given above.
\n" ); document.write( "
\n" ); document.write( "
\n" );