document.write( "Question 1207902: Independent random samples of n1 = 18 and n2 = 13 observations were selected from two normal populations with equal variances.
\n" ); document.write( "DATA:-
\n" ); document.write( "____________________Population (Ignore the lines)
\n" ); document.write( "____________________ 1_____2 (Ignore the lines)
\n" ); document.write( "Sample Size_________18____13 (Ignore the lines)
\n" ); document.write( "Sample Mean________34.6___32.1 (Ignore the lines)
\n" ); document.write( "Sample Variance_____4.5___5.9 (Ignore the lines)\r
\n" ); document.write( "\n" ); document.write( "(a) Find the rejection region for the test in part (a) for 𝛼 = 0.01. (If the test is one-tailed, enter NONE for the unused region. Round your answers to three decimal places.)
\n" ); document.write( "t > _______
\n" ); document.write( "t < _______\r
\n" ); document.write( "\n" ); document.write( "(b) Find the value of the test statistic. (Round your answer to three decimal places.)
\n" ); document.write( "t = \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "(c) Find the approximate p-value for the test.
\n" ); document.write( "p-value < 0.010
\n" ); document.write( "i) 0.010 < p-value < 0.020
\n" ); document.write( "ii) 0.020 < p-value < 0.050
\n" ); document.write( "iii) 0.050 < p-value < 0.100
\n" ); document.write( "iv) 0.100 < p-value < 0.200
\n" ); document.write( "v) p-value < 0.200
\n" ); document.write( "

Algebra.Com's Answer #847977 by ElectricPavlov(122)\"\" \"About 
You can put this solution on YOUR website!
**1. Calculate the Pooled Variance**\r
\n" ); document.write( "\n" ); document.write( "* Pooled variance (s_p^2) = ((n1 - 1) * s1^2 + (n2 - 1) * s2^2) / (n1 + n2 - 2)
\n" ); document.write( "* s_p^2 = ((18 - 1) * 4.5 + (13 - 1) * 5.9) / (18 + 13 - 2)
\n" ); document.write( "* s_p^2 = 5.06\r
\n" ); document.write( "\n" ); document.write( "**2. Calculate the Degrees of Freedom**\r
\n" ); document.write( "\n" ); document.write( "* Degrees of freedom (df) = n1 + n2 - 2 = 18 + 13 - 2 = 29\r
\n" ); document.write( "\n" ); document.write( "**3. Find the Critical Value**\r
\n" ); document.write( "\n" ); document.write( "* For a two-tailed test with α = 0.01 and df = 29, the critical values are:
\n" ); document.write( " * t_critical = ±2.756 \r
\n" ); document.write( "\n" ); document.write( "**4. Calculate the Test Statistic**\r
\n" ); document.write( "\n" ); document.write( "* t = (x̄1 - x̄2) / √(s_p^2 * (1/n1 + 1/n2))
\n" ); document.write( "* t = (34.6 - 32.1) / √(5.06 * (1/18 + 1/13))
\n" ); document.write( "* t = 3.048\r
\n" ); document.write( "\n" ); document.write( "**5. Determine the P-value**\r
\n" ); document.write( "\n" ); document.write( "* Using a t-distribution table or statistical software, find the p-value associated with the calculated t-statistic (3.048) and degrees of freedom (29).
\n" ); document.write( "* The p-value will be less than 0.01.\r
\n" ); document.write( "\n" ); document.write( "**Therefore:**\r
\n" ); document.write( "\n" ); document.write( "* **(a) Rejection Region:**
\n" ); document.write( " * t > 2.756
\n" ); document.write( " * t < -2.756\r
\n" ); document.write( "\n" ); document.write( "* **(b) Test Statistic (t): 3.048**\r
\n" ); document.write( "\n" ); document.write( "* **(c) P-value: p-value < 0.010**
\n" ); document.write( "
\n" ); document.write( "
\n" );