document.write( "Question 1204864: if : f '(g (x)) = g '(x), f ''(x) \[Times] f '(x) = f (x), g '(3) = 2 g ''(3) = 2} then (d ^5 g)/(dx ^5)| = ... (9 , 10 ,18 , 24) \n" ); document.write( "
Algebra.Com's Answer #847975 by ElectricPavlov(122)![]() ![]() ![]() You can put this solution on YOUR website! **1. Given:**\r \n" ); document.write( "\n" ); document.write( "* f'(g(x)) = g'(x) \n" ); document.write( "* f''(x) * f'(x) = f(x) \n" ); document.write( "* g'(3) = 2 \n" ); document.write( "* g''(3) = 2\r \n" ); document.write( "\n" ); document.write( "**2. Find g'''(3):**\r \n" ); document.write( "\n" ); document.write( "* Differentiate f'(g(x)) = g'(x) with respect to x using the chain rule: \n" ); document.write( " f''(g(x)) * g'(x) = g''(x)\r \n" ); document.write( "\n" ); document.write( "* Substitute x = 3: \n" ); document.write( " f''(g(3)) * g'(3) = g''(3) \n" ); document.write( " f''(g(3)) * 2 = 2 \n" ); document.write( " f''(g(3)) = 1\r \n" ); document.write( "\n" ); document.write( "**3. Find g''''(3):**\r \n" ); document.write( "\n" ); document.write( "* Differentiate f''(g(x)) * g'(x) = g''(x) with respect to x using the product rule and chain rule: \n" ); document.write( " [f'''(g(x)) * g'(x)] * g'(x) + f''(g(x)) * g''(x) = g'''(x)\r \n" ); document.write( "\n" ); document.write( "* Substitute x = 3: \n" ); document.write( " [f'''(g(3)) * 2] * 2 + 1 * 2 = g'''(3) \n" ); document.write( " 4 * f'''(g(3)) + 2 = g'''(3) \r \n" ); document.write( "\n" ); document.write( "* We need to find f'''(g(3)). To do this, differentiate the given equation f''(x) * f'(x) = f(x) with respect to x using the product rule: \n" ); document.write( " f'''(x) * f'(x) + f''(x) * f''(x) = f'(x)\r \n" ); document.write( "\n" ); document.write( "* Substitute x = g(3) in the above equation: \n" ); document.write( " f'''(g(3)) * f'(g(3)) + [f''(g(3))]^2 = f'(g(3)) \n" ); document.write( " f'''(g(3)) * 2 + 1^2 = 2 \n" ); document.write( " 2 * f'''(g(3)) = 1 \n" ); document.write( " f'''(g(3)) = 1/2\r \n" ); document.write( "\n" ); document.write( "* Now, substitute f'''(g(3)) = 1/2 back into the equation for g'''(3): \n" ); document.write( " 4 * (1/2) + 2 = g'''(3) \n" ); document.write( " g'''(3) = 4\r \n" ); document.write( "\n" ); document.write( "**4. Find g''''(3):**\r \n" ); document.write( "\n" ); document.write( "* Differentiate the equation for g'''(x) obtained in step 3: \n" ); document.write( " [f''''(g(x)) * g'(x)] * g'(x) + [f'''(g(x)) * g''(x)] * 2 + 2 * g'''(x) = g''''(x)\r \n" ); document.write( "\n" ); document.write( "* Substitute x = 3: \n" ); document.write( " [f''''(g(3)) * 2] * 2 + [1/2 * 2] * 2 + 2 * 4 = g''''(3) \n" ); document.write( " 4 * f''''(g(3)) + 2 + 8 = g''''(3) \n" ); document.write( " 4 * f''''(g(3)) + 10 = g''''(3)\r \n" ); document.write( "\n" ); document.write( "* To find f''''(g(3)), we need to differentiate the equation f'''(x) * f'(x) + [f''(x)]^2 = f'(x) with respect to x: \n" ); document.write( " f''''(x) * f'(x) + f'''(x) * f''(x) + 2 * f''(x) * f'''(x) = f''(x)\r \n" ); document.write( "\n" ); document.write( "* Substitute x = g(3) in the above equation: \n" ); document.write( " f''''(g(3)) * 2 + 1/2 * 1 + 2 * 1 * 1/2 = 1 \n" ); document.write( " 2 * f''''(g(3)) + 1 = 1 \n" ); document.write( " f''''(g(3)) = 0\r \n" ); document.write( "\n" ); document.write( "* Substitute f''''(g(3)) = 0 back into the equation for g''''(3): \n" ); document.write( " 4 * 0 + 10 = g''''(3) \n" ); document.write( " g''''(3) = 10\r \n" ); document.write( "\n" ); document.write( "**5. Find g'''''(3):**\r \n" ); document.write( "\n" ); document.write( "* Differentiate the equation for g''''(x) obtained in step 4: \n" ); document.write( " [f'''''(g(x)) * g'(x)] * g'(x) + [f''''(g(x)) * g''(x)] * 2 + 2 * g''''(x) = g'''''(x)\r \n" ); document.write( "\n" ); document.write( "* Substitute x = 3: \n" ); document.write( " [f'''''(g(3)) * 2] * 2 + [0 * 2] * 2 + 2 * 10 = g'''''(3) \n" ); document.write( " 4 * f'''''(g(3)) + 20 = g'''''(3)\r \n" ); document.write( "\n" ); document.write( "* To find f'''''(g(3)), we need to differentiate the equation f''''(x) * f'(x) + f'''(x) * f''(x) + 2 * f''(x) * f'''(x) = f''(x) with respect to x. This will involve higher-order derivatives of f(x) which are not directly provided in the given information. \r \n" ); document.write( "\n" ); document.write( "**Therefore, we cannot determine the exact value of g'''''(3) with the given information.**\r \n" ); document.write( "\n" ); document.write( "**Conclusion:**\r \n" ); document.write( "\n" ); document.write( "The provided information is insufficient to calculate the exact value of (d^5 g)/(dx^5) when x = 3. \n" ); document.write( " \n" ); document.write( " |