document.write( "Question 1207200: Please use the 18 rules of natural deduction, the 4 instantiation and generalization rules to derive the conclusions of this problem.\r
\n" );
document.write( "\n" );
document.write( "1. (x)(Bx ⊃ Cx)
\n" );
document.write( "2. (∃x)(Ax • Bx) /(∃x)(Ax • Cx) \n" );
document.write( "
Algebra.Com's Answer #847973 by ElectricPavlov(122)![]() ![]() ![]() You can put this solution on YOUR website! **1. (x)(Bx ⊃ Cx)** \n" ); document.write( " * Premise\r \n" ); document.write( "\n" ); document.write( "**2. (∃x)(Ax • Bx)** \n" ); document.write( " * Premise\r \n" ); document.write( "\n" ); document.write( "**3. Aa • Ba** \n" ); document.write( " * Existential Instantiation (2)\r \n" ); document.write( "\n" ); document.write( "**4. Ba** \n" ); document.write( " * Simplification (3)\r \n" ); document.write( "\n" ); document.write( "**5. Ba ⊃ Ca** \n" ); document.write( " * Universal Instantiation (1)\r \n" ); document.write( "\n" ); document.write( "**6. Ca** \n" ); document.write( " * Modus Ponens (4, 5)\r \n" ); document.write( "\n" ); document.write( "**7. Aa • Ca** \n" ); document.write( " * Conjunction (3, 6)\r \n" ); document.write( "\n" ); document.write( "**8. (∃x)(Ax • Cx)** \n" ); document.write( " * Existential Generalization (7)\r \n" ); document.write( "\n" ); document.write( "**Explanation:**\r \n" ); document.write( "\n" ); document.write( "1. **Existential Instantiation (2):** We introduce a new constant 'a' to represent an arbitrary object that satisfies the existential quantifier in premise 2.\r \n" ); document.write( "\n" ); document.write( "2. **Simplification (3):** We extract the conjunct 'Ba' from the conjunction '(Aa • Ba)'.\r \n" ); document.write( "\n" ); document.write( "3. **Universal Instantiation (1):** We instantiate the universal quantifier in premise 1 with the constant 'a'.\r \n" ); document.write( "\n" ); document.write( "4. **Modus Ponens (4, 5):** We apply the rule of Modus Ponens to derive 'Ca' from 'Ba' and 'Ba ⊃ Ca'.\r \n" ); document.write( "\n" ); document.write( "5. **Conjunction (2, 5):** We combine 'Aa' and 'Ca' using the rule of Conjunction.\r \n" ); document.write( "\n" ); document.write( "6. **Existential Generalization (6):** We generalize the statement 'Aa • Ca' to obtain the existential quantifier '(∃x)(Ax • Cx)'.\r \n" ); document.write( "\n" ); document.write( "This derivation demonstrates that the conclusion (∃x)(Ax • Cx) logically follows from the given premises within the specified 7 steps. \n" ); document.write( " \n" ); document.write( " |