document.write( "Question 1205688: If T: R³→ R³ is If is a linear transformation defined by T(x,y,z)=(x+2y,x−y+z,−2y+z) Write the primary decomposition of R³ \n" ); document.write( "
Algebra.Com's Answer #847954 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
To find the primary decomposition of R³ under the linear transformation T, we need to find the eigenvalues and eigenvectors of the matrix associated with T. \r
\n" ); document.write( "\n" ); document.write( "**Step 1: Find the Matrix Representation of T**\r
\n" ); document.write( "\n" ); document.write( "The matrix representation of T is:\r
\n" ); document.write( "\n" ); document.write( "```
\n" ); document.write( "A = [[1, 2, 0],
\n" ); document.write( " [1, -1, 1],
\n" ); document.write( " [0, -2, 1]]
\n" ); document.write( "```\r
\n" ); document.write( "\n" ); document.write( "**Step 2: Find the Eigenvalues of A**\r
\n" ); document.write( "\n" ); document.write( "To find the eigenvalues, we solve the characteristic equation det(A - λI) = 0:\r
\n" ); document.write( "\n" ); document.write( "```
\n" ); document.write( "det([[1-λ, 2, 0],
\n" ); document.write( " [1, -1-λ, 1],
\n" ); document.write( " [0, -2, 1-λ]]) = 0
\n" ); document.write( "```\r
\n" ); document.write( "\n" ); document.write( "Solving this equation, we find the eigenvalues: λ₁ = 1, λ₂ = -1, and λ₃ = 1.\r
\n" ); document.write( "\n" ); document.write( "**Step 3: Find the Eigenspaces**\r
\n" ); document.write( "\n" ); document.write( "For each eigenvalue, we find the corresponding eigenspace:\r
\n" ); document.write( "\n" ); document.write( "* **For λ₁ = 1:**
\n" ); document.write( " Solve the equation (A - I)v = 0:
\n" ); document.write( " ```
\n" ); document.write( " [[0, 2, 0],
\n" ); document.write( " [1, -2, 1],
\n" ); document.write( " [0, -2, 0]]v = 0
\n" ); document.write( " ```
\n" ); document.write( " The eigenspace E₁ is spanned by {(1, 0, 1), (0, 1, 1)}.\r
\n" ); document.write( "\n" ); document.write( "* **For λ₂ = -1:**
\n" ); document.write( " Solve the equation (A + I)v = 0:
\n" ); document.write( " ```
\n" ); document.write( " [[2, 2, 0],
\n" ); document.write( " [1, 0, 1],
\n" ); document.write( " [0, -2, 2]]v = 0
\n" ); document.write( " ```
\n" ); document.write( " The eigenspace E₂ is spanned by {(1, -1, 1)}.\r
\n" ); document.write( "\n" ); document.write( "**Step 4: Primary Decomposition**\r
\n" ); document.write( "\n" ); document.write( "Since the eigenvalues are distinct, the primary decomposition of R³ is the direct sum of the eigenspaces:\r
\n" ); document.write( "\n" ); document.write( "```
\n" ); document.write( "R³ = E₁ ⊕ E₂
\n" ); document.write( "```\r
\n" ); document.write( "\n" ); document.write( "where:
\n" ); document.write( "* E₁ = span{(1, 0, 1), (0, 1, 1)}
\n" ); document.write( "* E₂ = span{(1, -1, 1)}\r
\n" ); document.write( "\n" ); document.write( "This means that every vector in R³ can be uniquely expressed as a sum of a vector in E₁ and a vector in E₂.
\n" ); document.write( "
\n" ); document.write( "
\n" );