document.write( "Question 1209235: Find the number of ordered pairs (m,n) of integers that satisfy
\n" );
document.write( "mn = 3m + 3n + 17. \n" );
document.write( "
Algebra.Com's Answer #847889 by math_tutor2020(3816)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "Answer: 8\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Work Shown\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "mn = 3m+3n+17 \n" ); document.write( "mn-3m-3n = 17 \n" ); document.write( "mn-3m-3n+9 = 17+9 \n" ); document.write( "(mn-3m)+(-3n+9) = 26 \n" ); document.write( "m(n-3)-3(n-3) = 26 \n" ); document.write( "(m-3)(n-3) = 26\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "n = 26 = 2^1*13^1 = p^a*q^b shows that a = 1, b = 1 \n" ); document.write( "d(n) = number of positive divisors of n \n" ); document.write( "n = p^a*q^b \n" ); document.write( "d(n) = (1+a)*(1+b) \n" ); document.write( "d(26) = (1+1)*(1+1) \n" ); document.write( "d(26) = 4 \n" ); document.write( "There are 4 positive divisors of 26 and they are: 1, 2, 13, 26. \n" ); document.write( "When including the negative divisors we get 8 total divisors: \n" ); document.write( "1, 2, 13, 26, \n" ); document.write( "-1, -2, -13, -26\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So there must be 8 ordered pairs (m,n) that make (m-3)(n-3) = 26 true and that make m*n = 3m+3n+17 true as well; where m,n are integers. \n" ); document.write( "If m,n were allowed to be decimal numbers, then there would be infinitely many ordered pair solutions. \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-----------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Extra info: \n" ); document.write( "If you want to find each ordered pair, then set the factors m-3 and n-3 equal to the factors of 26.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Some examples: \n" ); document.write( "m-3 = 1 and n-3 = 26 lead to (m,n) = (4,29) \n" ); document.write( "m-3 = 2 and n-3 = 13 lead to (m,n) = (5,16) \n" ); document.write( "m-3 = 13 and n-3 = 2 lead to (m,n) = (16,5)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Here are all 8 integer solutions \n" ); document.write( "(-23,2), (-10,1), (1,-10), (2,-23), \n" ); document.write( "(4,29), (5,16), (16,5), (29,4) \n" ); document.write( "They are sorted from smallest x coordinate to the largest x coordinate. \n" ); document.write( "We have symmetry going on since (5,16) swaps to (16,5) as one example.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Side notes:
\n" ); document.write( " \n" ); document.write( " |