document.write( "Question 1209228: Let a and b be the roots of the quadratic 2x^2 - 8x + 7 = -3x^2 + 15x + 11. Compute 1/a^2 + 1/b^2. \n" ); document.write( "
Algebra.Com's Answer #847876 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "Answer: 569/16 \n" ); document.write( "569/16 = 35.5625 exactly without any rounding done to it.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------------\r \n" ); document.write( "\n" ); document.write( "Explanation\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "2x^2 - 8x + 7 = -3x^2 + 15x + 11 \n" ); document.write( "rearranges to \n" ); document.write( "5x^2 - 23x - 4 = 0 \n" ); document.write( "after getting everything to one side.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Divide everything by the leading coefficient \n" ); document.write( "x^2 - (23/5)x - 4/5 = 0 \n" ); document.write( "This is to make the leading coefficient be equal to 1.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Vieta's Formulas say that the roots add to the negative of the x coefficient while also multiplying to the constant term when the leading coefficient is 1. \n" ); document.write( "So we can establish these equations \n" ); document.write( "a+b = 23/5 \n" ); document.write( "a*b = -4/5\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let's square both sides of the first equation \n" ); document.write( "a+b = 23/5 \n" ); document.write( "(a+b)^2 = (23/5)^2 \n" ); document.write( "a^2+2ab+b^2 = 529/25 \n" ); document.write( "a^2+2*(-4/5)+b^2 = 529/25 ......... plug in ab = -4/5 \n" ); document.write( "a^2-8/5+b^2 = 529/25 \n" ); document.write( "a^2+b^2 = 529/25+8/5 \n" ); document.write( "a^2+b^2 = 529/25+40/25 \n" ); document.write( "a^2+b^2 = 569/25 \n" ); document.write( "The motivation for this paragraph of algebra might not be obvious until reaching the next section below.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "----------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Then, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "I used GeoGebra to verify the answer is correct. \n" ); document.write( " \n" ); document.write( " |