document.write( "Question 1209187: A homeowner has 80 feet of fence to enclose a rectangular garden. What dimensions for the garden give the maximum area? \n" ); document.write( "
Algebra.Com's Answer #847784 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Answer: 20 feet by 20 feet\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Short explanation:
\n" ); document.write( "Given some amount of fencing P, the dimensions of the max area rectangle (which turns out to be a square) is P/4 by P/4
\n" ); document.write( "We have P = 80 feet of fencing lead to P/4 = 80/4 = 20 which is the dimensions of the square.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Longer explanation\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "x = length\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "perimeter of a rectangle = 2*width+2*length
\n" ); document.write( "80 = 2*width+2*length
\n" ); document.write( "40 = width + length ........ divide both sides by 2
\n" ); document.write( "width = 40-length
\n" ); document.write( "width = 40-x\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In short,
\n" ); document.write( "length = x
\n" ); document.write( "width = 40-x\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "which leads to:
\n" ); document.write( "area = length*width
\n" ); document.write( "area = x*(40-x)
\n" ); document.write( "area = 40x-x^2
\n" ); document.write( "area = -x^2+40x\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Compare the equation y = -x^2+40x with the template y = ax^2+bx+c
\n" ); document.write( "a = -1, b = 40, c = 0
\n" ); document.write( "The vertex (h,k) is the highest point of this parabola.
\n" ); document.write( "This is because a = -1 is negative. The parabola opens downward.
\n" ); document.write( "Therefore, finding the vertex will help us max out the area.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "h = -b/(2a)
\n" ); document.write( "h = -40/(2*(-1))
\n" ); document.write( "h = 20
\n" ); document.write( "This is the x coordinate of the vertex.
\n" ); document.write( "You can use a graphing tool like Desmos and GeoGebra to verify.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The area maxes out when the length is x = 20 feet.
\n" ); document.write( "The width is 40-x = 40-20 = 20 feet.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The dimensions are 20 feet by 20 feet.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Extra info: The area is 20*20 = 400 square feet.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Another approach.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Factor -x^2+40x = 0 to get -x(x-40) = 0
\n" ); document.write( "From here we can quickly see that the roots are x = 0 and x = 40.
\n" ); document.write( "It turns out that the x coordinate of the vertex is the midpoint of these roots.
\n" ); document.write( "This is due to the parabola's mirror symmetry.
\n" ); document.write( "Add the roots and divide in half: (0+40)/2 = 20
\n" ); document.write( "The x coordinate of the vertex is x = 20.
\n" ); document.write( "The length is x = 20 and the width is 40-x = 40-20 = 20.
\n" ); document.write( "We have a 20 by 20 square.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Side note: you could use the quadratic formula to solve -x^2+40x=0, but it would be overkill in my opinion.
\n" ); document.write( "
\n" ); document.write( "
\n" );