document.write( "Question 1209084: For a certain value of k, the system
\n" ); document.write( "x + y + 3z = 10,
\n" ); document.write( "4x + 5y + 6z = 7,
\n" ); document.write( "kx - 3y + 2z = 3
\n" ); document.write( "has no solutions. What is this value of k?
\n" ); document.write( "

Algebra.Com's Answer #847654 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Answer: k = -16/9\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Explanation\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The given system is
\n" ); document.write( "\"system%28x+%2B+y+%2B+3z+=+10%2C4x+%2B+5y+%2B+6z+=+7%2Ckx+-+3y+%2B+2z+=+3%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "It converts to this matrix
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
11310
4567
k-323

\n" ); document.write( "I placed the matrix in a table or grid format to separate out each entry. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From here we can apply row operations to get the matrix into Row Echelon Form (REF).
\n" ); document.write( "This is where we turn each pivot into a 1, and zero out each item below the pivots.
\n" ); document.write( "The pivots are along the northwest diagonal.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Here's what the steps look like.
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
11310
4567
k-323
\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
11310
01-6-33R2 - 4*R1 --> R2
k-323
\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
11310
01-6-33
0-3-k2-3k3-10kR3 - k*R1 --> R3
\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
11310
01-6-33
00-16-9k-96-43kR3 - (-3-k)*R2 --> R3
\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
11310
01-6-33
001(-96-43k)/(-16-9k)(1/(-16-9k))*R3 --> R3

\n" ); document.write( "At this point we can stop since the pivots are 1 and each item below the pivot is 0.
\n" ); document.write( "The third row leads to the equation \"0x%2B0y%2B1z+=+%28-96-43k%29%2F%28-16-9k%29\" or \"z+=+%28-96-43k%29%2F%28-16-9k%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Set the denominator equal to zero and isolate k.
\n" ); document.write( "-16-9k = 0
\n" ); document.write( "-9k = 16
\n" ); document.write( "k = -16/9\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If k = -16/9, then the denominator of \"z+=+%28-96-43k%29%2F%28-16-9k%29\" is zero, and it would mean there are no solutions to the original system.
\n" ); document.write( "For any other value of k, that fraction is some real number; and we can use that value of z to find y, and then find x using back substitution.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Verification using WolframAlpha\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Somewhat similar questions are found here and here
\n" ); document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );