document.write( "Question 1208939: Solve |3x - |2x + 1|| = 4\r
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #847488 by ikleyn(52794)![]() ![]() You can put this solution on YOUR website! Solve |3x - |2x + 1|| = 4 \n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Looking into the solutions by other tutors, you may ask yourself, if there exist a method, \n" ); document.write( "which allows to get true answers without creating excessive roots.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Yes, such a method does exist. It is shown below.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "Starting equation is\r\n" ); document.write( "\r\n" ); document.write( " |3x - |2x + 1|| = 4. (1)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "It means that \r\n" ); document.write( "\r\n" ); document.write( " either 3x - |2x + 1| = 4 (2)\r\n" ); document.write( "\r\n" ); document.write( " or 3x - |2x + 1| = -4. (3)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Next consider equations (2) and (3) separately.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " Equation (2)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Equation (2) is equivalent to\r\n" ); document.write( "\r\n" ); document.write( " |2x+1| = 3x-4. (4)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "In the domain 2x+1 >= 0, equation (4) is equivalent to\r\n" ); document.write( "\r\n" ); document.write( " 2x+1 = 3x-4, 1+4 = 3x - 2x, 5 = x, x= 5.\r\n" ); document.write( "\r\n" ); document.write( " For this value of x, the expression 2x+1 = 2*5+1 = 11 is positive,\r\n" ); document.write( " so, the premise 3x-2 >= 0 is valid; hence, x= 5 is a valid solution to equation (4).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "In the domain 2x+1 < 0, equation (4) is equivalent to\r\n" ); document.write( "\r\n" ); document.write( " 2x+1 = -(3x-4), 2x+1 = -3x+4, 2x+3x = 4 - 1, 5x= 3, x= 3/5.\r\n" ); document.write( "\r\n" ); document.write( " For this value of x, the expression 2x+1 = 3*(3/5)+1 = 9/5+1 is positive,\r\n" ); document.write( " so, the premise 2x+1 < 0 is NOT valid; hence, x= 3/5 is NOT a valid solution to equation (4).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " Equation (3)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Equation (3) is equivalent to\r\n" ); document.write( "\r\n" ); document.write( " |2x+1| = 3x+4. (5)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "In the domain 2x+1 >= 0, equation (5) is equivalent to\r\n" ); document.write( "\r\n" ); document.write( " 2x+1 = 3x+4, 1-4 = 3x-2x, -3 = x, x= -3.\r\n" ); document.write( "\r\n" ); document.write( " For this value of x, the expression 2x+1 = 2*(-3)+1 = -6+1 = -5 is negative,\r\n" ); document.write( " so, the premise 2x+1 >= 0 is NOT valid; hence, x= -3 is NOT a valid solution to equation (5).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "In the domain 2x+1 < 0, equation (5) is equivalent to\r\n" ); document.write( "\r\n" ); document.write( " 2x+1 = -(3x+4), 2x+1 = -3x-4, 2x + 3x = -4 - 1, 5x= -5, x= -5/5 = -1.\r\n" ); document.write( "\r\n" ); document.write( " For this value of x, the expression 2x+1 = 2*(-1)+1 = -2+1 = -1 is negative,\r\n" ); document.write( " so, the premise 2x+1 < 0 is valid; hence, x= -1 is a valid solution to equation (5).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "ANSWER. After this analysis, we see that the only solutions for the given equation (1) \r\n" ); document.write( "\r\n" ); document.write( " are x= -1 and x= 5.\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Notice that this solution follows the strict logic at every step, with the analysis of possible \n" ); document.write( "domains, so it provides the true roots of the original equation without the necessity to check them at the end.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "This method of solution and this logic do not create excessive erroneous solutions, \n" ); document.write( "and therefore do not require checking the solutions at the end.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The possible excessive erroneous solutions are rejected (are excluded) in the course of analysis.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The plot using plotting tool www.desmos/calculator (free of charge for common use) does confirm the solution visually\r \n" ); document.write( "\n" ); document.write( "https://www.desmos.com/calculator/ajbgvspnhp \r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |