document.write( "Question 1208931: Show that: if a > 0, b > 0, and
\n" ); document.write( "sqrt{a} < sqrt{b}, then a < b.\r
\n" ); document.write( "\n" ); document.write( "Hint given: \r
\n" ); document.write( "\n" ); document.write( "b - a = (sqrt{b} - sqrt{a})(sqrt{b} + sqrt{a}\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #847460 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "sqrt(a) < sqrt(b)
\n" ); document.write( "sqrt(b) > sqrt(a)
\n" ); document.write( "sqrt(b)-sqrt(a) > 0
\n" ); document.write( "(sqrt(b)-sqrt(a))*(sqrt(b)+sqrt(a)) > 0*(sqrt(b)+sqrt(a)) ....... see note below
\n" ); document.write( "b-a > 0
\n" ); document.write( "b > a
\n" ); document.write( "a < b\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note:
\n" ); document.write( "I multiplied both sides by (sqrt(b)+sqrt(a)) to use the hint your teacher gave you.
\n" ); document.write( "The output of a square root function is never negative as long as there isn't a negative out front. Eg: sqrt(25) = 5. This means sqrt(a) and sqrt(b) are both positive. Furthermore it means sqrt(b)+sqrt(a) > 0. Multiplying both sides by a positive value will not flip the inequality sign.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Another approach.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "sqrt(a) < sqrt(b) means that sqrt(a) = sqrt(b) - c for some positive real number c.
\n" ); document.write( "In other words, sqrt(a) = sqrt(b) - somePositiveNumber\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Square both sides of this equation.
\n" ); document.write( "sqrt(a) = sqrt(b) - c
\n" ); document.write( "( sqrt(a) )^2 = ( sqrt(b) - c)^2
\n" ); document.write( "a = ( sqrt(b) )^2 - 2*c*sqrt(b) + c^2
\n" ); document.write( "a = b - 2*c*sqrt(b) + c^2
\n" ); document.write( "a = b - (2*c*sqrt(b) - c^2)
\n" ); document.write( "a = b - c*(2*sqrt(b) - c)
\n" ); document.write( "a = b - c*(sqrt(b) + sqrt(b) - c)
\n" ); document.write( "a = b - c*(sqrt(b) + sqrt(a))
\n" ); document.write( "a = b - positiveNumber*(positiveNumber + positiveNumber)
\n" ); document.write( "a = b - positiveNumber*positiveNumber
\n" ); document.write( "a = b - positiveNumber
\n" ); document.write( "a < b\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "In the 3rd and 4th steps, notice that the squaring and square roots cancel each other out.
\n" ); document.write( "For instance ( sqrt(b) )^2 = b when b > 0.
\n" ); document.write( "The terms marked in blue represent a substitution based on the initial equation.
\n" ); document.write( "
\n" ); document.write( "
\n" );