document.write( "Question 1208880: If (a + 1)(b + 1)(a + b) = 1530
\n" ); document.write( "and a³ + b³ = 1241
\n" ); document.write( "then a + b = ?
\n" ); document.write( "

Algebra.Com's Answer #847388 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "The other tutor has a great solution.
\n" ); document.write( "Perhaps it's the most efficient pathway to solve.
\n" ); document.write( "I'll provide another method.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "w = a+b
\n" ); document.write( "(a+1)(b+1)(a+b) = 1530
\n" ); document.write( "(ab+a+b+1)(a+b) = 1530
\n" ); document.write( "(ab+w+1)w = 1530
\n" ); document.write( "ab+w+1 = 1530/w
\n" ); document.write( "ab = 1530/w - w - 1
\n" ); document.write( "Let's call this equation (1) to use later. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Then notice how,
\n" ); document.write( "w = a+b
\n" ); document.write( "w^2 = (a+b)^2
\n" ); document.write( "w^2 = a^2+2ab+b^2
\n" ); document.write( "w^2-3ab = a^2+2ab+b^2-3ab
\n" ); document.write( "w^2-3ab = a^2-ab+b^2
\n" ); document.write( "Let's call this equation (2)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Use the sum of cubes formula to say the following
\n" ); document.write( "a^3+b^3 = (a+b)(a^2-ab+b^2)
\n" ); document.write( "a^3+b^3 = w(w^2-3ab) ............................. plug in equation (2)
\n" ); document.write( "1241 = w(w^2-3*( 1530/w - w - 1 )) ............... plug in equation (1)
\n" ); document.write( "1241 = w^3-3w*( 1530/w) + 3w^2 + 3w
\n" ); document.write( "1241 = w^3-4590 + 3w^2 + 3w
\n" ); document.write( "w^3-4590 + 3w^2 + 3w-1241 = 0
\n" ); document.write( "w^3 + 3w^2 + 3w - 5831 = 0
\n" ); document.write( "From here you can use a graphing calculator to graph y = x^3 + 3x^2 + 3x - 5831
\n" ); document.write( "The only real number root is x = 17. This is where the cubic curve crosses the x axis. You'll likely need to adjust your window to be able to see this root.
\n" ); document.write( "As a check,
\n" ); document.write( "x^3 + 3x^2 + 3x - 5831 = 0
\n" ); document.write( "(17)^3 + 3(17)^2 + 3(17) - 5831 = 0
\n" ); document.write( "4913 + 867 + 51 - 5831 = 0
\n" ); document.write( "0 = 0
\n" ); document.write( "This proves that w = 17 is a solution to w^3 + 3w^2 + 3w - 5831 = 0\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Through trial and error (aided with a spreadsheet), you can determine that a = 8 and b = 9 satisfy the two given equations.\n" ); document.write( "\n" ); document.write( "
(a+1)*(b+1)*(a+b) = 1530
(8+1)*(9+1)*(8+9) = 1530
9*10*17 = 1530
1530 = 1530 .... works
a^3+b^3 = 1241
8^3+9^3 = 1241
512+729 = 1241
1241 = 1241 .... works
So we conclude that a+b = 8+9 = 17
\n" ); document.write( "Due to symmetry, we could also say that a = 9 and b = 8.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer: 17
\n" ); document.write( "
\n" ); document.write( "
\n" );