document.write( "Question 1208800: Let x and y be nonnegative real numbers. If x^2 + 5y^2 = 30 , then find the maximum value of x + y . \n" ); document.write( "
Algebra.Com's Answer #847263 by ikleyn(52781)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "Let x and y be nonnegative real numbers. If x^2 + 5y^2 = 30, then find the maximum value of x + y. \n" ); document.write( "~~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "Equation\r\n" ); document.write( "\r\n" ); document.write( " x^2 + 5y^2 = 30 (1)\r\n" ); document.write( "\r\n" ); document.write( "represents an ellipse, centered at the origin of the coordinate system.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Equation \r\n" ); document.write( "\r\n" ); document.write( " x + y = c (2)\r\n" ); document.write( "\r\n" ); document.write( "represents straight line with the slope -1. \r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "They want you find a point on the ellipse with the maximum value x + y = c.\r\n" ); document.write( "\r\n" ); document.write( "The value of \"c\" defines the position of the line in the plane: different values of \"c\"\r\n" ); document.write( "produce parallel lines, and changing of the value of \"c\" moves/translates the lines \r\n" ); document.write( "vertically up or down, leaving them parallel.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "So, they actually want you find the tangent line to the given ellipse with maximum value of \"c\",\r\n" ); document.write( "which corresponds to the most high possible position of the tangent line.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Next, since the slope of the line is -1, from geometry intuition, it is clear that \r\n" ); document.write( "the tangency point on the ellipse lies in the first quadrant.\r\n" ); document.write( "\r\n" ); document.write( "There is another parallel tangent line, but for this second line the tangency point \r\n" ); document.write( "is in the third quadrant.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " OK. This preface reveals the geometric essence of the problem.\r\n" ); document.write( "\r\n" ); document.write( " Now I move on to the solution.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "All lines x + y = c have the slope -1. \r\n" ); document.write( "\r\n" ); document.write( "So, we are looking and searching for the points on the ellipse in QI and QIII, where \r\n" ); document.write( "the tangent line to the ellipse has the slope -1.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "For it, I differentiate equation (1)\r\n" ); document.write( "\r\n" ); document.write( " 2x*dx + 10y*dy = 0.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "which is the same as\r\n" ); document.write( "\r\n" ); document.write( " 2x*dx = - 10y*dy.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "From this equation in differentials, I find the derivative \r\n" ); document.write( "\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |