document.write( "Question 1208655: Given that 10^(2x)=0.2 and log5=0.6990, find value of x
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #847041 by ikleyn(52781)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "Given that 10^(2x)=0.2 and log5=0.6990, find value of x
\n" ); document.write( "~~~~~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "Notice that 0.2 = 1/5.  Therefore,  log(0.2) = \"log%28%281%2F5%29%29\" = log(1) - log(5) = 0 - 0.6990 = -0.6990.\r\n" );
document.write( "\r\n" );
document.write( "Now, we are given \r\n" );
document.write( "\r\n" );
document.write( "    \"10%5E%282x%29\" = 0.2.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Take logarithm base 10 of both sides.  You will get\r\n" );
document.write( "\r\n" );
document.write( "      2x = log(0.2) = as we deduced above = -0.699.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Hence,  x = -0.6990/2 = -0.3495.    ANSWER\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "CHECK.  \"10%5E%282%2A%28-0.3495%29%29\" = 0.2000   (rounded),   which confirms the solution.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );