document.write( "Question 1208389: The water in a hemi-spherical bowl is 42 cm across the top is 9 cm deep. How much more water is needed to fill the bowl to the brim?
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #846808 by ikleyn(52781)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "The water in a hemi-spherical bowl is 42 cm across the top \"highlight%28cross%28is%29%29\" and 9 cm deep.
\n" ); document.write( "How much more water is needed to fill the bowl to the brim?
\n" ); document.write( "~~~~~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "        In his post,  Edwin instructs to use the radius of the sphere  R = 21 cm.\r
\n" ); document.write( "\n" ); document.write( "        It is a strategic error.  It shows that  Edwin misread the problem.\r
\n" ); document.write( "\n" ); document.write( "        The radius of the sphere is not given in this problem.\r
\n" ); document.write( "\n" ); document.write( "        In this problem, \"42 cm across the top\" means \"42 cm across the water surface\".\r
\n" ); document.write( "\n" ); document.write( "        Finding the hemi-sphere radius is the first step of the solution.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "If you make a sketch, you will see a right angled triangle.\r\n" );
document.write( "\r\n" );
document.write( "Its hypotenuse is the radius of the sphere R.\r\n" );
document.write( "\r\n" );
document.write( "Its legs are  (R-9) cm and 42/2 = 21 cm.\r\n" );
document.write( "\r\n" );
document.write( "So, we write the Pythagorean equation\r\n" );
document.write( "\r\n" );
document.write( "    (R-9)^2 + 21^2 = R^2.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "From it, we find\r\n" );
document.write( "\r\n" );
document.write( "    R^2 - 18R + 81 + 441 = R^2,\r\n" );
document.write( "\r\n" );
document.write( "    81 + 441 = 18R\r\n" );
document.write( "\r\n" );
document.write( "    18R = 522\r\n" );
document.write( "\r\n" );
document.write( "      R = 522/18 = 29.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Thus the sphere radius is 29 cm.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Then we find the volume of the hemi-sphere\r\n" );
document.write( "\r\n" );
document.write( "    \"V%5Bhemi-sphere%5D\" = \"%281%2F2%29%2A%284%2F3%29%5Epi%2AR%5E3\" = \"%282%2F3%29%2A3.14159265%2A29%5E3\" = 51080.202 cm^3.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Next you find the volume of the spherical segment for R = 29 cm and h = 9 cm\r\n" );
document.write( "using the formula\r\n" );
document.write( "\r\n" );
document.write( "    \"V%5Bsegment%5D\" = \"%281%2F3%29%2Api%2Ah%5E2%2A%283R-h%29\" = \"%281%2F3%29%2A3.14159265%2A9%5E2%2A%283%2A29-9%29\" = 6616.194 cm^3.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now your answer is the difference of the two volumes\r\n" );
document.write( "\r\n" );
document.write( "    \"V%5Bhemi-sphere%5D\" - \"V%5Bsegment%5D\" = 51080.202 - 6616.194 = 44464.008 cm^3,  or 44.464 liters  (rounded).\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );