document.write( "Question 1208324: if y ^(y) = e ^(x - y) find (dy)/(dx) at x = 1 \n" ); document.write( "
Algebra.Com's Answer #846673 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "y^y = e^(x-y) \n" ); document.write( "Ln( y^y ) = Ln( e^(x-y) ) \n" ); document.write( "y*Ln(y) = (x-y)*Ln(e) \n" ); document.write( "y*Ln(y) = (x-y)*1 \n" ); document.write( "y*Ln(y) = x-y\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Apply the implicit derivative to both sides \n" ); document.write( "y*Ln(y) = x-y \n" ); document.write( "y'*Ln(y) + y*(1/y)*y' = 1-y' \n" ); document.write( "y'*Ln(y) + y' + y' = 1 \n" ); document.write( "y'*Ln(y) + 2*y' = 1 \n" ); document.write( "y'*( Ln(y) + 2 ) = 1 \n" ); document.write( "y' = 1/( Ln(y) + 2 )\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We'll come back to this later. \n" ); document.write( "Return to the original equation. \n" ); document.write( "Plug in x = 1 to find its paired y value. \n" ); document.write( "y^y = e^(x-y) \n" ); document.write( "y^y = e^(1-y) \n" ); document.write( "At first glance this equation looks impossible to solve by hand. \n" ); document.write( "But through trial-and-error you would find that y = 1 is a solution. \n" ); document.write( "There may be other solutions. \n" ); document.write( "y^y = e^(1-y) \n" ); document.write( "1^1 = e^(1-1) \n" ); document.write( "1 = e^(0) \n" ); document.write( "1 = 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So, \n" ); document.write( "y' = 1/( Ln(y) + 2 ) \n" ); document.write( "y' = 1/( Ln(1) + 2 ) \n" ); document.write( "y' = 1/( 0 + 2 ) \n" ); document.write( "y' = 1/2 \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " |