document.write( "Question 1208298: if (x/y) + (y/x) = 1 , then y'' = (y/x) (True or False) \n" ); document.write( "
Algebra.Com's Answer #846630 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Answer: False
\n" ); document.write( "If you said either y' = y/x or y'' = 0, then you would making a true statement.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Work Shown\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "w = x/y
\n" ); document.write( "w' = (y-x*y')/(y^2) .... quotient rule\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "z = y/x
\n" ); document.write( "z' = (y'*x-y)/(x^2) ... quotient rule\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "(x/y) + (y/x) = 1
\n" ); document.write( "w + z = 1
\n" ); document.write( "w' + z' = 0 ........ applied implicit derivative
\n" ); document.write( "(y-x*y')/(y^2) + (y'*x-y)/(x^2) = 0
\n" ); document.write( "( x^2(y-x*y') + y^2(y'*x-y) )/(x^2y^2) = 0
\n" ); document.write( "x^2(y-x*y') + y^2(y'*x-y) = 0
\n" ); document.write( "x^2*y-x^3*y' + xy^2*y'-y^3 = 0
\n" ); document.write( "-x^3*y'+xy^2*y' = -x^2*y+y^3
\n" ); document.write( "y'( -x^3+xy^2 ) = -x^2*y+y^3
\n" ); document.write( "y' = (-x^2*y+y^3)/(-x^3+xy^2)
\n" ); document.write( "y' = (-y(x^2-y^2))/(-x(x^2-y^2))
\n" ); document.write( "y' = y/x\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Confirmation using WolframAlpha
\n" ); document.write( "https://www.wolframalpha.com/input?i=derivative+%28x%2Fy%29+%2B+%28y%2Fx%29+%3D+1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Another way to confirm is to use GeoGebra's ImplicitDerivative command.
\n" ); document.write( "https://geogebra.github.io/docs/manual/en/commands/ImplicitDerivative/
\n" ); document.write( "You would type in ImplicitDerivative(x/y+y/x-1) which produces the output y/x.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Then,
\n" ); document.write( "y' = y/x
\n" ); document.write( "y'' = (y'*x-y)/(x^2) .... quotient rule
\n" ); document.write( "y'' = ((y/x)*x-y)/(x^2) ....... substitute in y' = y/x
\n" ); document.write( "y'' = (y-y)/(x^2)
\n" ); document.write( "y'' = (0)/(x^2)
\n" ); document.write( "y'' = 0\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Another Approach\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "(x/y) + (y/x) = 1
\n" ); document.write( "(x^2)/(xy)+(y^2)/(xy) = 1
\n" ); document.write( "(x^2+y^2)/(xy) = 1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let
\n" ); document.write( "p = x^2+y^2
\n" ); document.write( "q = xy
\n" ); document.write( "Then
\n" ); document.write( "p' = 2x+2y*y'
\n" ); document.write( "q' = y+x*y'\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So,
\n" ); document.write( "(x^2+y^2)/(xy) = 1
\n" ); document.write( "d/dx[ (x^2+y^2)/(xy) ] = d/dx[1]
\n" ); document.write( "d/dx[ p/q ] = 0
\n" ); document.write( "(p'*q - p*q')/(q^2) = 0 ............. quotient rule
\n" ); document.write( "p'*q - p*q' = 0
\n" ); document.write( "(2x+2y*y')xy - (x^2+y^2)(y+x*y') = 0
\n" ); document.write( "2x^2y+2xy^2*y' - (x^2(y+x*y')+y^2(y+x*y')) = 0
\n" ); document.write( "2x^2y+2xy^2*y' - (x^2y+x^3*y')-(y^3+xy^2*y') = 0
\n" ); document.write( "2x^2y+2xy^2*y' - x^2y-x^3*y'-y^3-xy^2*y' = 0
\n" ); document.write( "2xy^2*y'-x^3*y'-xy^2*y' = -2x^2y+x^2y+y^3
\n" ); document.write( "y'(2xy^2-x^3-xy^2) = -2x^2y+x^2y+y^3
\n" ); document.write( "y'(xy^2-x^3) = -x^2y+y^3
\n" ); document.write( "y' = (-x^2y+y^3)/(xy^2-x^3)
\n" ); document.write( "y' = (-y(x^2-y^2))/(-x(-y^2+x^2))
\n" ); document.write( "y' = (-y(x^2-y^2))/(-x(x^2-y^2))
\n" ); document.write( "y' = y/x\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From here the steps are the same as the previous section.
\n" ); document.write( "
\n" ); document.write( "
\n" );