document.write( "Question 1208183: If f(x)= 1/((1/x)-3) , find the domain of f(f(x)) \n" ); document.write( "
Algebra.Com's Answer #846422 by ikleyn(52799)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "If f(x)= 1/((1/x)-3) , find the domain of f(f(x))
\n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "In order for the function f(x) be defined, every occurred denominator should/must be different from zero.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, we write  f(x) = \"1%2F%28%281%2Fx%29-3%29\",  and we see that \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "         x  must be different from 0:  (x =/= 0);\r\n" );
document.write( "\r\n" );
document.write( "    and\r\n" );
document.write( "\r\n" );
document.write( "         \"1%2Fx-3\"  must be different from 0,  which implies  \r\n" );
document.write( "\r\n" );
document.write( "                      \"1%2Fx-3\" =/= 0,  1 =/= 3x,  x =/= 1/3.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "In this way, we obtain the  first necessary condition: \r\n" );
document.write( "\r\n" );
document.write( "    function f(x) is defined over the set of all real numbers, except of x= 0  and/or  x= 1/3.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    +--------------------------------------------------+\r\n" );
document.write( "    |   At this point, half of the problem is solved,  |\r\n" );
document.write( "    |      and the domain of f(x) is determined.       |\r\n" );
document.write( "    |    Now I will work to solve the second half,     |\r\n" );
document.write( "    |     which is finding the domain for f(f(x)).     |\r\n" );
document.write( "    +--------------------------------------------------+\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now, in order for f(f(x)) be defined, these two additional conditions must be satisfied: \r\n" );
document.write( "\r\n" );
document.write( "    f(x) =/= 0  and f(x) =/= 1/3.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "If f(x) is defined,  then  f(x) = \"1%2F%28%281%2Fx%29-3%29\" = \"x%2F%281-3x%29\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Since x= 0 is not in the domain, we see that if f(x) is defined, then it is never equal to zero;\r\n" );
document.write( "so this case is over without giving new restrictions.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "If f(x) is defined and  f(x) = 1/3,  then\r\n" );
document.write( "\r\n" );
document.write( "    \"x%2F%281-3x%29\" = \"1%2F3\",\r\n" );
document.write( "\r\n" );
document.write( "    3x = 1 - 3x  --->  3x + 3x = 1  --->  6x = 1  --->  x = 1/6.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Thus, the domain of f(f(x)) is the set of all real numbers except of 0, 1/3 and 1/6.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "                    Now the problem is solved completely.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "ANSWER.  The domain of f(f(x)) is the set of all real numbers except of 0, 1/3 and 1/6.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved completely.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );