document.write( "Question 1208064: Quadrilateral PQRS is cyclic and side PS = u is a
\n" ); document.write( "diameter of the circle. If PQ = QR = v, RS = w, and u, v,
\n" ); document.write( "and w are integers such that v does not equal w, prove that u cannot be a
\n" ); document.write( "prime number.
\n" ); document.write( "

Algebra.Com's Answer #846365 by ikleyn(52788)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "Quadrilateral PQRS is cyclic and side PS = u is a
\n" ); document.write( "diameter of the circle. If PQ = QR = v, RS = w, and u, v,
\n" ); document.write( "and w are integers such that v does not equal w, prove that u cannot be a
\n" ); document.write( "prime number.
\n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "        I will give another solution,  different from  Edwin,  and more compact.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "Make a sketch.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, you have quadrilateral PQRS inscribed in the circle such that PS \r\n" );
document.write( "is a diameter of this circle; PQ = QR = v; RS = w; PS = u.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Draw the diagonal PR.  Let PR = d (the length).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "We have isosceles triangle PQR.  Using the cosine law, we can write\r\n" );
document.write( "\r\n" );
document.write( "    \"d%5E2\" = \"v%5E2+%2B+v%5E2+-+2v%2Av%2Acos%28Q%29\"\r\n" );
document.write( "\r\n" );
document.write( "or\r\n" );
document.write( "\r\n" );
document.write( "    \"d%5E2\" = \"2v%5E2+-+2v%5E2%2Acos%28Q%29\".    (1)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "From the other hand, triangle PRS is the right triangle, since angle PRS \r\n" );
document.write( "leans on the diameter PS.  Therefore,\r\n" );
document.write( "\r\n" );
document.write( "    \"d%5E2\" = \"u%5E2+-+w%5E2\".             (2)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "From (1) and (2), we can exclude  \"d%5E2\"  and write\r\n" );
document.write( "\r\n" );
document.write( "    \"2v%5E2+-+2v%5E2%2Acos%28Q%29\" = \"u%5E2+-+w%5E2\".    (3)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Since quadrilateral PQRS is inscribed in the circle, its opposite angles S and Q \r\n" );
document.write( "are supplementary:  S + Q = \"pi\".  Therefore,  cos(Q) = -cos(S).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Hence, from (3) we have\r\n" );
document.write( "\r\n" );
document.write( "    \"2v%5E2+%2B+2v%5E2%2Acos%28S%29\" = \"u%5E2+-+w%5E2\".    (4)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Next,  cos(S) = \"w%2Fu\"  (from the right triangle PRS).\r\n" );
document.write( "\r\n" );
document.write( "Thus\r\n" );
document.write( "\r\n" );
document.write( "    \"2v%5E2+%2B+2v%5E2%2A%28w%2Fu%29\" = \"u%5E2+-+w%5E2\".      (5)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Multiply both sides of (5) by  \"u\".  You will get\r\n" );
document.write( "\r\n" );
document.write( "    \"2v%5E2%2Au+%2B+2v%5E2%2Aw\" = \"u%5E3+-+w%5E2%2Au\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Combine the terms with \"u\" on the right side; keep the remaining term  \"2v%5E2%2Aw\"  on the left side\r\n" );
document.write( "\r\n" );
document.write( "    \"2%2Av%5E2%2Aw\" = \"u%5E3+-+w%5E2%2Au+-+2%2Av%5E2%2Au\".   (6)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "In (6), right side is a multiple of \"u\".  So, if \"u\" is a prime number, \r\n" );
document.write( "then left side  \"2v%5E2%2Aw\"  is a multiple of \"u\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Hence, EITHER \"u\" divides 2,  OR  \"u\" divides  \"v%5E2\",  OR  \"u\"  divides  \"w\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "It leads to contradiction, since\r\n" );
document.write( "\r\n" );
document.write( "    - if \"u\" divides 2, then u= 2;  but then from the right triangle PRS the leg w\r\n" );
document.write( "      must be shorter than the hypotenuse u, i.e. w= 1; and side v must be shorter \r\n" );
document.write( "      than the diameter u= 2; so, in this case w = v, which is excluded in the problem.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    - if \"u\" divides \"v%5E2\", then \"u\" divides \"v\";  but it is impossible, since \r\n" );
document.write( "      \"v\" is less than \"u\" (the diameter).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    - if \"u\" divides \"w\", it is also impossible, since \"w\" is less than \"u\" (the diameter).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "These contradictions prove that \"u\" can not be a prime number.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );