\r\n" );
document.write( "\r\n" );
document.write( "Maybe Ikleyn or Greenestamps can simplify my solution but here it is at last.\r\n" );
document.write( "\r\n" );
document.write( "Since quadrilaterals are normally lettered counter-clockwise, and PS is a\r\n" );
document.write( "diameter, the quadrilateral must be inscribed in a semi-circle. I will need\r\n" );
document.write( "some right triangles so I will bisect everything including the diameter. The\r\n" );
document.write( "green line segments are the perpendicular bisectors of the upper 3 sides and\r\n" );
document.write( "the angles as well since the triangles are isosceles. So the radius of the\r\n" );
document.write( "circle is u/2, and will be the hypotenuse of all 6 right triangles in this figure:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "[eqs. A]
and
\r\n" );
document.write( "\r\n" );
document.write( "The sum of all 6 angles is 180o\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "2α and β are complementary,\r\n" );
document.write( "
\r\n" );
document.write( "α and α+β are also complementary\r\n" );
document.write( "\r\n" );
document.write( "So
\r\n" );
document.write( "\r\n" );
document.write( "[eq. B]
\r\n" );
document.write( "\r\n" );
document.write( "
. Taking sines of both sides:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "Using the associative law and since 2α and β are complementary,\r\n" );
document.write( "
\r\n" );
document.write( "Substituting from [eq. B] above\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "From [eqs. A]\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Multiply through by u3\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Since
are factors of the last term, we try both and\r\n" );
document.write( "find that w=-u is a solution and so we factor it by synthetic \r\n" );
document.write( "division\r\n" );
document.write( "\r\n" );
document.write( "-u | u 2v2 2uv2-u3\r\n" );
document.write( " | -u2 -2uv2+u3\r\n" );
document.write( " u 2v2-u2 0\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "
;
\r\n" );
document.write( "
;
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "So the term
must be an integer, since the terms \r\n" );
document.write( "on the right are integers.\r\n" );
document.write( "\r\n" );
document.write( "For contradiction, assume u is a prime number.\r\n" );
document.write( "\r\n" );
document.write( "If u=2, then the radius is 1, and the semicircle is π.\r\n" );
document.write( "\r\n" );
document.write( "So
, that would make v=1, w=2. then triangle\r\n" );
document.write( "SRO would have sides 1,1,2 which violates the triangle\r\n" );
document.write( "inequality. So u is not the prime number 2.\r\n" );
document.write( "\r\n" );
document.write( "Thus u must divide evenly into v2. But if u is a prime \r\n" );
document.write( "then u must divide evenly into v as well. This cannot be true \r\n" );
document.write( "because v < u, the diameter.\r\n" );
document.write( "\r\n" );
document.write( "Thus we have a contradiction and u cannot be a prime number. \r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" );
document.write( "