document.write( "Question 1208115: Complete the square for each quadratic equation. \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "A. f(x) = 3x^2 + 6x + 2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "B. g(x) = -2x^2 - 12x - 13
\n" ); document.write( "

Algebra.Com's Answer #846293 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Answers:
\n" ); document.write( "A. f(x) = 3(x+1)^2 - 1
\n" ); document.write( "B. g(x) = -2(x+3)^2 + 5\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Work Shown for Part A\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "f(x) = 3x^2 + 6x + 2
\n" ); document.write( "f(x) = 3(x^2 + 2x) + 2
\n" ); document.write( "f(x) = 3(x^2 + 2x + 0) + 2
\n" ); document.write( "f(x) = 3(x^2 + 2x + 1-1) + 2 ...... see note below.
\n" ); document.write( "f(x) = 3((x^2+2x+1) - 1) + 2
\n" ); document.write( "f(x) = 3((x+1)^2 - 1) + 2
\n" ); document.write( "f(x) = 3(x+1)^2 + 3(-1) + 2
\n" ); document.write( "f(x) = 3(x+1)^2 - 3 + 2
\n" ); document.write( "f(x) = 3(x+1)^2 - 1 is the final answer to part A\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: On the steps marked in blue, I took half of the x coefficient and squared it.
\n" ); document.write( "(2/2)^2 = 1^2 = 1
\n" ); document.write( "Why do we do this \"take half and square it\" operation?
\n" ); document.write( "See this page
\n" ); document.write( "https://www.mathsisfun.com/algebra/completing-square.html\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Another example:
\n" ); document.write( "y = 2x^2 + 12x + 5
\n" ); document.write( "y = 2(x^2 + 6x) + 5
\n" ); document.write( "y = 2(x^2 + 6x + 0) + 5
\n" ); document.write( "y = 2(x^2 + 6x + 9-9) + 5 ..... half of 6 is 3, which squares to 9
\n" ); document.write( "y = 2((x^2+6x+9)-9)+5
\n" ); document.write( "y = 2((x+3)^2-9)+5
\n" ); document.write( "y = 2(x+3)^2+2(-9)+5
\n" ); document.write( "y = 2(x+3)^2-18+5
\n" ); document.write( "y = 2(x+3)^2-13\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Explanation for Part B\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We could use the same process as part A. However, I'll use a different approach.
\n" ); document.write( "Recall that y = ax^2+bx+c is standard form while y = a(x-h)^2+k is vertex form
\n" ); document.write( "(h,k) is the location of the vertex.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "h = -b/(2a) is the formula to find the x coordinate of the vertex.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We have y = -2x^2 - 12x - 13 where the coefficients are: a = -2, b = -12, c = -13
\n" ); document.write( "So,
\n" ); document.write( "h = -b/(2a)
\n" ); document.write( "h = -(-12)/(2*(-2))
\n" ); document.write( "h = -3
\n" ); document.write( "Plug this value into the equation to find its paired y value.
\n" ); document.write( "y = -2x^2 - 12x - 13
\n" ); document.write( "y = -2(-3)^2 - 12(-3) - 13
\n" ); document.write( "y = -2(9) - 12(-3) - 13
\n" ); document.write( "y = -18 + 36 - 13
\n" ); document.write( "y = 18 - 13
\n" ); document.write( "y = 5
\n" ); document.write( "This is the y coordinate of the vertex, so we have k = 5.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "h = -3 and k = 5 pair up to give the vertex (h,k) = (-3,5)
\n" ); document.write( "a = -2 from earlier\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We go from
\n" ); document.write( "y = a(x-h)^2+k
\n" ); document.write( "to
\n" ); document.write( "y = -2(x-(-3))^2 + 5
\n" ); document.write( "then that simplifies into
\n" ); document.write( "y = -2(x+3)^2 + 5 which is the answer to part B.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The CompleteSquare function in GeoGebra is useful to verify the answers.
\n" ); document.write( "
\n" ); document.write( "
\n" );