document.write( "Question 1208010: A random sample of n = 36 observations has a mean x = 28.7 and a standard deviation s = 3.8.\r
\n" ); document.write( "\n" ); document.write( "(a) Find a 90% lower confidence bound for the population mean 𝜇. (Round your answer to two decimal places.)\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "(b) How many observations do you need to estimate 𝜇 to within 0.6, with probability equal to 0.95? (Round your answer up to the nearest whole number.)
\n" ); document.write( " observations
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #846199 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Answers:
\n" ); document.write( "(a) 27.66
\n" ); document.write( "(b) 155\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "---------------------------------------------------------------------------------------
\n" ); document.write( "---------------------------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Explanation for Part (a)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "n = 36 = sample size
\n" ); document.write( "xbar = 28.7 = sample mean
\n" ); document.write( "s = 3.8 = sample standard deviation\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "mu = population mean = unknown
\n" ); document.write( "sigma = population standard deviation = unknown\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Since n = 36 fits the criteria n > 30, we can use the Z distribution even if we don't know the value of sigma.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "At a 90% confidence level, the critical z value is roughly z = 1.645
\n" ); document.write( "Use a reference table or stats calculator to determine this.
\n" ); document.write( "I'm using this table
\n" ); document.write( "https://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf
\n" ); document.write( "A table like this should be somewhere in the back of your stats textbook.
\n" ); document.write( "Your professor will likely hand out such a table during exams if s/he expects you to use them.
\n" ); document.write( "Refer to the bottom row of the table where it lists the confidence levels. Just above \"90%\" is the value 1.645\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "E = margin of error for population mean
\n" ); document.write( "E = z*s/sqrt(n)
\n" ); document.write( "E = 1.645*3.8/sqrt(36)
\n" ); document.write( "E = 1.041833333333 approximately\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "L = lower boundary of confidence interval
\n" ); document.write( "L = xbar - E
\n" ); document.write( "L = 28.7 - 1.041833333333
\n" ); document.write( "L = 27.658166666667
\n" ); document.write( "L = 27.66 which is the answer to part (a).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Explanation for Part (b)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "E = margin of error for population mean
\n" ); document.write( "E = z*s/sqrt(n)
\n" ); document.write( "E*sqrt(n) = z*s
\n" ); document.write( "sqrt(n) = z*s/E
\n" ); document.write( "n = (z*s/E)^2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "This formula gives us the minimum sample size needed when we specify a desired margin of error.
\n" ); document.write( "In this case we have E = 0.6
\n" ); document.write( "The portion that says \"with probability equal to 0.95\" refers to a 95% confidence interval.
\n" ); document.write( "At 95% confidence, the z critical value is roughly z = 1.960 (use a table or stats calculator).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Here are the inputs we'll need
\n" ); document.write( "z = 1.960 (approximate)
\n" ); document.write( "s = 3.8
\n" ); document.write( "E = 0.6\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's calculate the minimum sample size.
\n" ); document.write( "n = (z*s/E)^2
\n" ); document.write( "n = (1.960*3.8/0.6)^2
\n" ); document.write( "n = 154.090844444444
\n" ); document.write( "n = 155 .... rounding up to nearest integer.
\n" ); document.write( "Despite n being much closer to 154, we must round up to 155 to clear the hurdle.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's see what happens when we try n = 154.
\n" ); document.write( "E = z*s/sqrt(n)
\n" ); document.write( "E = 1.960*3.8/sqrt(154)
\n" ); document.write( "E = 0.60018 approximately
\n" ); document.write( "This is slightly over the 0.6 threshold we want.
\n" ); document.write( "The goal is to get E = 0.6 exactly or E < 0.6\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now try n = 155.
\n" ); document.write( "E = z*s/sqrt(n)
\n" ); document.write( "E = 1.960*3.8/sqrt(155)
\n" ); document.write( "E = 0.59824 approximately
\n" ); document.write( "We are now under the 0.6 threshold. \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Answer to part (b) is 155
\n" ); document.write( "
\n" ); document.write( "
\n" );