document.write( "Question 1207940: The tangent line to a circle may be defined as the line that intersects the circle in a single point, called the point of tangency. If the equation of the circle is x^2 + y^2 = r^2 and the equation of the tangent line is y = mx + b, show that:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "A. r^2(1 + m^2) = b^2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "B. The point of tangency is [(-r^2 m)/b, (r^2/b)]\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "C. The tangent line is perpendicular to the line containing the center of the circle and point of tangency. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #846104 by mananth(16946)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Since tangent and circle meet at only one point there is only one solution . Let the point be (x,y)
\n" ); document.write( "The equation of the circle is given
\n" ); document.write( "\"x%5E2%2By%5E2=r%5E2\"
\n" ); document.write( "The equation of the tangent line is given
\n" ); document.write( "y=mx+b
\n" ); document.write( "substitute y= mx+b in the equation of circle
\n" ); document.write( "\"+x%5E2+%2B+%28mx%2Bb%29%5E2+=+r%5E2\"
\n" ); document.write( "\"+x%5E2+%2B+m%5E2x%5E2%2B2mbx+%2Bb%5E2+=+r%5E2\"
\n" ); document.write( "\"%28m%5E2%2B1%29x%5E2%2B+2mbx+%2B%28b%5E2-r%5E2%29=0\"
\n" ); document.write( "This is a quadratic equation and since tangent and circle meet at only one point there is only one solution
\n" ); document.write( "Discriminant \"b%5E2-4ac+=0\"
\n" ); document.write( "Substitute b ,a and c from the above equation .
\n" ); document.write( "\"%282mb%29%5E2++-++4%28%28m%5E2%2B1%29%28b%5E2-r%5E2%29%29=0\"
\n" ); document.write( "\"+4m%5E2b%5E2-4%28m%5E2b%5E2-m%5E2r%5E2%2Bb%5E2-r%5E2%29=0\"
\n" ); document.write( "\"+4m%5E2b%5E2-4m%5E2b%5E2%2B4m%5E2r%5E2-4b%5E2%2B4r%5E2%29=0\"
\n" ); document.write( "\"+4m%5E2r%5E2-4b%5E2%2B4r%5E2=0\"
\n" ); document.write( "\"+4m%5E2r%5E2%2B4r%5E2=4b%5E2\"
\n" ); document.write( "\"r%5E2%28m%5E2%2B1%29+=+b%5E2+\"-----------------------------------------A
\n" ); document.write( "B
\n" ); document.write( "\"%28m%5E2%2B1%29x%5E2%2B+2mbx+%2B%28b%5E2-r%5E2%29=0\"
\n" ); document.write( "Since the discriminant is zero, the equation has exactly one solution for x. The solution for x in a quadratic equation is given by
\n" ); document.write( "x = -b/2a
\n" ); document.write( "Here it is -2mb/2(m^2+1) = -mb/(m^2+1)
\n" ); document.write( "substitute this value of x into the equation y=mx+b
\n" ); document.write( "y = m(-mb/(m^2+1)) +b )
\n" ); document.write( "y = (-m^2b/(m^2+1)) +b )
\n" ); document.write( "y= (-m^2b +m^2b+b)/(m^2+1)
\n" ); document.write( "y = b/(m^2+1)-----------------------------------------------1\r
\n" ); document.write( "\n" ); document.write( "\"r%5E2%28m%5E2%2B1%29+=+b%5E2+%7D%7D++++from+A%0D%0A%7B%7B%7B%28m%5E2%2B1%29=+b%5E2%2Fr%5E2\"
\n" ); document.write( "Substitute(m^2+1) in 1
\n" ); document.write( "y = b/(b^2/r^2)
\n" ); document.write( "y=r^2/b
\n" ); document.write( "\"x+=+-mb%2F%28m%5E2%2B1%29+=+-mb%2F%28b%5E2%2Fr%5E2%29+=+-%28mr%5E2%2Fb%29\"
\n" ); document.write( "The point of tangency is (-r^2 m)/b, (r^2/b) ……………………….B
\n" ); document.write( "C
\n" ); document.write( "We have to prove tangent and radius are perpendicular.
\n" ); document.write( "From circle equation we know co ordinates of centre are (0,0)
\n" ); document.write( "The point of contact of radius and tangent are (-r^2 m)/b, (r^2/b)
\n" ); document.write( "Find slope using two point formula
\n" ); document.write( "Slope = ((r^2/b))/((-r^2m/b))
\n" ); document.write( "Slope =(- 1/m)
\n" ); document.write( "Slope of tangent line = m
\n" ); document.write( "M*(-1/m)= -1
\n" ); document.write( "Hence The tangent line is perpendicular to the line containing the center of the circle and point of tangency………….C\r
\n" ); document.write( "\n" ); document.write( " \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );