document.write( "Question 1207918: For A and B, find the standard form of the equation of each circle.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "A. Center (1,0) and has the point (-3,2).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "B. Center (-3,1) and tangent to the y-axis.
\n" ); document.write( "

Algebra.Com's Answer #846048 by mananth(16946)\"\" \"About 
You can put this solution on YOUR website!
A\r
\n" ); document.write( "\n" ); document.write( "iven:
\n" ); document.write( "• Center: (1,0)\r
\n" ); document.write( "\n" ); document.write( "• Point on the circle: (−3,2)
\n" ); document.write( "We find the radius r by the distance between the center and the given point by the distance formula:
\n" ); document.write( "r=sqrt((x2−x1)^2+(y2−y1)^2)\r
\n" ); document.write( "\n" ); document.write( "Substitute the given coordinates \r
\n" ); document.write( "\n" ); document.write( "r=sqrt((−3)−1)^2+(2−0)^2)
\n" ); document.write( "r = sqrt(20)
\n" ); document.write( "r= 2 sqrt(5)\r
\n" ); document.write( "\n" ); document.write( "Equation of circle
\n" ); document.write( "(x-1)^2+ (y-0)^2 = (2sqrt(5))^2\r
\n" ); document.write( "\n" ); document.write( "(x-1)^2+y^2= 20 ---------------------------A\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Given: center (−3,1)
\n" ); document.write( "Tangent to the y-axis
\n" ); document.write( "Since the circle is tangent to the y-axis, the radius r is the horizontal distance from the center to the y-axis. The x-coordinate of the center is −3 \r
\n" ); document.write( "\n" ); document.write( "so the radius 𝑟 =3\r
\n" ); document.write( "\n" ); document.write( "(x−(−3)) ^2 +(y−1) ^2 = 3^2=9\r
\n" ); document.write( "\n" ); document.write( "(x+3)^2 +(y-1)^2 = 9
\n" ); document.write( "
\n" ); document.write( "
\n" );