document.write( "Question 1207857: Find all integers ,
, such that
is its own inverse modulo
\n" );
document.write( "
Algebra.Com's Answer #845993 by ikleyn(52782)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "Find all integers \n" ); document.write( "~~~~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "(a) For our solution, the important fact is that 163 is a prime number.\r\n" ); document.write( "\r\n" ); document.write( " Integer x is an inverse to integer n modulo 163 if and only if\r\n" ); document.write( "\r\n" ); document.write( " nx = 1 mod 163 by the definition.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " According to it, integer n is its own inverse modulo 163 if and only if\r\n" ); document.write( "\r\n" ); document.write( " n^2 = 1 modulo 163.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " One solution is trivial: it is n = 1 mod 163, or simply n= 1.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " It is easy to find another (non-trivial) solution n. Take n = -1 mod 163; then n^2 = (-1)*(-1) = 1 mod 163.\r\n" ); document.write( "\r\n" ); document.write( " So, the class n = -1 mod 163 is the other possible solution. \r\n" ); document.write( "\r\n" ); document.write( " If we want n in the interval 0 <= n < 163, we should take n = 162, which is 163-1.\r\n" ); document.write( "\r\n" ); document.write( " Then we have n^2 = (163-1)*(163-1) = 163^2 - 2*163 + 1 = 1 mod 163.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " So, this part (one half) of the problem is solved. \r\n" ); document.write( " We found two solutions in the given interval: n = 1 and n = 162.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "(b) Now we want to prove that these two solutions, n= 1 and n= 162, are unique in the given interval \r\n" ); document.write( "\r\n" ); document.write( " OK. Let assume that m is another integer number in the interval 0 <= m < 163,\r\n" ); document.write( " inverse to itself mod 163. Then we have these two modular equations\r\n" ); document.write( "\r\n" ); document.write( " m*m = 1 mod 163\r\n" ); document.write( "\r\n" ); document.write( " 1*1 = 1 mod 163.\r\n" ); document.write( "\r\n" ); document.write( " Taking the difference, we have\r\n" ); document.write( "\r\n" ); document.write( " (m+1)*(m-1) = 0 mod 163.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " It means that either (m-1) or (m+1) is divisible by 163.\r\n" ); document.write( "\r\n" ); document.write( " In combination with the fact that 0 <= m < 163, it means that either m= 1 or m= 162.\r\n" ); document.write( "\r\n" ); document.write( " Thus we proved that in interval [0,163) there is no other own-inverse numbers mod 163\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved, with complete explanations.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "---------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "This problem is from 22nd Philippine Mathematical Olympiad of 2019.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |