document.write( "Question 1207709:  Prove that if 0 < a < b, then 0 < (1/b) < (1/a).\r
\n" );
document.write( "\n" );
document.write( "Can any of the proofs posted today be proven by using the Direct Proof Method? \n" );
document.write( "
| Algebra.Com's Answer #845739 by math_tutor2020(3817)      You can put this solution on YOUR website! \n" ); document.write( "0 < a < b \n" ); document.write( "a < b \n" ); document.write( "a*(1/a) < b*(1/a) \n" ); document.write( "1 < b/a \n" ); document.write( "1*(1/b) < (b/a)*(1/b) \n" ); document.write( "1/b < 1/a \n" ); document.write( "0 < 1/b < 1/a\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Since a > 0, we know that 1/a > 0 also. \n" ); document.write( "Multiplying both sides by a positive number will not flip the inequality sign. \n" ); document.write( "The same applies for b as well. \n" ); document.write( "b > 0 leads to 1/b > 0.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Another approach\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "0 < a < b \n" ); document.write( "a < b \n" ); document.write( "a*(1/(ab)) < b*(1/(ab)) \n" ); document.write( "1/b < 1/a \n" ); document.write( "0 < 1/b < 1/a\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Note that a > 0 and b > 0 lead to ab > 0, and furthermore 1/(ab) > 0. \n" ); document.write( " \n" ); document.write( " |