.
\n" );
document.write( "For a certain positive integer $n$, the number $n^{6873}$ leaves a remainder of
\n" );
document.write( "$3$ when divided by $131.$ What remainder does $n$ leave when divided by $131$?
\n" );
document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~\r
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( " After seeing the post by @math_tutor, I found some errors in my previous version\r
\n" );
document.write( "\n" );
document.write( " that should be fixed. I fixed them, and now you see my updated version.\r
\n" );
document.write( "\n" );
document.write( " Now there is no difference between our final numbers/answers.\r
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "\r\n" );
document.write( "We are given that the remainder\r\n" );
document.write( "\r\n" );
document.write( "
mod 131 is 3.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Notice that 131 is a prime number and 6873 = 113 mod 130.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " Now apply the little Fermat's theorem.\r\n" );
document.write( "\r\n" );
document.write( " It says that for fixed integer \"n\", where n is relatively prime to 131, the sequence \r\n" );
document.write( " k -->
mod 131 is periodical (= cyclic) over integer values k = 1, 2, 3, . . . \r\n" );
document.write( " with the period of 130.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "It tells us that
=
= 3 mod 131. \r\n" );
document.write( "Based on this information, we should find {n mod 131}.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " Let me repeat it again:\r\n" );
document.write( "\r\n" );
document.write( " Using the little Fermat's theorem, we deduced \r\n" );
document.write( " from the given info that
= 3 mod 131.\r\n" );
document.write( " Having it, we want to find {n mod 131}.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Take
= 3 mod 131 and square it. You will get
=
mod 131.\r\n" );
document.write( "\r\n" );
document.write( "Take
= 3 mod 131 and cube it. You will get
=
mod 131.\r\n" );
document.write( "\r\n" );
document.write( ". . . and so on . . . \r\n" );
document.write( "\r\n" );
document.write( "Take
= 3 mod 131 and raise to degree m. You will get
=
mod 131.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The idea is to find a degree m such that m*113 = 1 mod 130.\r\n" );
document.write( "\r\n" );
document.write( "Then, due to little Fermat's theorem (again) we will have n =
mod 131 and will solve our problem this way.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " Thus, our task is to find m, which is \r\n" );
document.write( " the Modular Multiplicative Inverse to 113 modulo 130.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Fortunately, in the Internet there are calculators for it,\r\n" );
document.write( "that solve this intermediate task. See these links\r\n" );
document.write( "\r\n" );
document.write( " Modular Multiplicative Inverse Calculator\r\n" );
document.write( " https://planetcalc.com/3311/\r\n" );
document.write( "\r\n" );
document.write( " Inverse Modulo Calculator\r\n" );
document.write( " https://www.omnicalculator.com/math/inverse-modulo\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The Modular Multiplicative Inverse to 113 modulo 130 is 107 modulo 130.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now the only thing to complete the solution is to find
mod 131.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "For it, I created Excel spreadsheet below.\r\n" );
document.write( "\r\n" );
document.write( "The working formula in my spreadsheet is
=
,
= 3.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " T A B L E \r\n" );
document.write( "\r\n" );
document.write( "k
mod 131\r\n" );
document.write( "------------------------------------\r\n" );
document.write( "1 3\r\n" );
document.write( "2 9\r\n" );
document.write( "3 27\r\n" );
document.write( "4 81\r\n" );
document.write( "5 112\r\n" );
document.write( "6 74\r\n" );
document.write( "7 91\r\n" );
document.write( "8 11\r\n" );
document.write( "9 33\r\n" );
document.write( "10 99\r\n" );
document.write( "11 35\r\n" );
document.write( "12 105\r\n" );
document.write( "13 53\r\n" );
document.write( "14 28\r\n" );
document.write( "15 84\r\n" );
document.write( "16 121\r\n" );
document.write( "17 101\r\n" );
document.write( "18 41\r\n" );
document.write( "19 123\r\n" );
document.write( "20 107\r\n" );
document.write( "21 59\r\n" );
document.write( "22 46\r\n" );
document.write( "23 7\r\n" );
document.write( "24 21\r\n" );
document.write( "25 63\r\n" );
document.write( "26 58\r\n" );
document.write( "27 43\r\n" );
document.write( "28 129\r\n" );
document.write( "29 125\r\n" );
document.write( "30 113\r\n" );
document.write( "31 77\r\n" );
document.write( "32 100\r\n" );
document.write( "33 38\r\n" );
document.write( "34 114\r\n" );
document.write( "35 80\r\n" );
document.write( "36 109\r\n" );
document.write( "37 65\r\n" );
document.write( "38 64\r\n" );
document.write( "39 61\r\n" );
document.write( "40 52\r\n" );
document.write( "41 25\r\n" );
document.write( "42 75\r\n" );
document.write( "43 94\r\n" );
document.write( "44 20\r\n" );
document.write( "45 60\r\n" );
document.write( "46 49\r\n" );
document.write( "47 16\r\n" );
document.write( "48 48\r\n" );
document.write( "49 13\r\n" );
document.write( "50 39\r\n" );
document.write( "51 117\r\n" );
document.write( "52 89\r\n" );
document.write( "53 5\r\n" );
document.write( "54 15\r\n" );
document.write( "55 45\r\n" );
document.write( "56 4\r\n" );
document.write( "57 12\r\n" );
document.write( "58 36\r\n" );
document.write( "59 108\r\n" );
document.write( "60 62\r\n" );
document.write( "61 55\r\n" );
document.write( "62 34\r\n" );
document.write( "63 102\r\n" );
document.write( "64 44\r\n" );
document.write( "65 1\r\n" );
document.write( "66 3\r\n" );
document.write( "67 9\r\n" );
document.write( "68 27\r\n" );
document.write( "69 81\r\n" );
document.write( "70 112\r\n" );
document.write( "71 74\r\n" );
document.write( "72 91\r\n" );
document.write( "73 11\r\n" );
document.write( "74 33\r\n" );
document.write( "75 99\r\n" );
document.write( "76 35\r\n" );
document.write( "77 105\r\n" );
document.write( "78 53\r\n" );
document.write( "79 28\r\n" );
document.write( "80 84\r\n" );
document.write( "81 121\r\n" );
document.write( "82 101\r\n" );
document.write( "83 41\r\n" );
document.write( "84 123\r\n" );
document.write( "85 107\r\n" );
document.write( "86 59\r\n" );
document.write( "87 46\r\n" );
document.write( "88 7\r\n" );
document.write( "89 21\r\n" );
document.write( "90 63\r\n" );
document.write( "91 58\r\n" );
document.write( "92 43\r\n" );
document.write( "93 129\r\n" );
document.write( "94 125\r\n" );
document.write( "95 113\r\n" );
document.write( "96 77\r\n" );
document.write( "97 100\r\n" );
document.write( "98 38\r\n" );
document.write( "99 114\r\n" );
document.write( "100 80\r\n" );
document.write( "101 109\r\n" );
document.write( "102 65\r\n" );
document.write( "103 64\r\n" );
document.write( "104 61\r\n" );
document.write( "105 52\r\n" );
document.write( "106 25\r\n" );
document.write( "107 75 <---=== \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The ANSWER to the problem's question is 75.\r\n" );
document.write( "\r\n" );
document.write( "In other words, n leaves the remainder 75 when is divided by 131.\r\n" );
document.write( "
\r
\n" );
document.write( "\n" );
document.write( "Solved.\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "------------------\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "Couple of post-solution notes:\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "\r\n" );
document.write( " (1) Finding the Modular Multiplicative Inverse to 61 modulo 131 is a technical issue.\r\n" );
document.write( "\r\n" );
document.write( " I used and referred to online calculators with the only goal do not distract \r\n" );
document.write( " a reader from the mainstream idea of the solution.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " (2) The method making calculations in the spreadsheet is to avoid overflowing (= loosing the precision)\r\n" );
document.write( " when using direct formula for (
mod 131).\r\n" );
document.write( "
\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "