document.write( "Question 1207683: Let $p$ be a prime. What are the possible remainders when $p$ is divided by $17?$ Select all that apply. \n" ); document.write( "
Algebra.Com's Answer #845688 by Edwin McCravy(20055)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( "Possible remainders are integers from 0 through 16, inclusive: \r\n" ); document.write( "\r\n" ); document.write( " P = Q x 17 + R\r\n" ); document.write( "------------------\r\n" ); document.write( " 17 = 1 x 17 + 0\r\n" ); document.write( "103 = 6 x 17 + 1\r\n" ); document.write( " 2 = 0 x 17 + 2\r\n" ); document.write( " 3 = 0 x 17 + 3\r\n" ); document.write( " 89 = 5 x 17 + 4\r\n" ); document.write( " 5 = 0 x 17 + 5\r\n" ); document.write( "193 = 11 x 17 + 6\r\n" ); document.write( " 7 = 0 x 17 + 7\r\n" ); document.write( " 59 = 3 x 17 + 8\r\n" ); document.write( "179 = 10 x 17 + 9\r\n" ); document.write( " 61 = 3 x 17 + 10\r\n" ); document.write( " 11 = 0 x 17 + 11\r\n" ); document.write( " 29 = 1 x 17 + 12\r\n" ); document.write( " 13 = 0 x 17 + 13\r\n" ); document.write( " 31 = 1 x 17 + 14\r\n" ); document.write( " 83 = 4 x 17 + 15\r\n" ); document.write( " 67 = 3 x 17 + 16\r\n" ); document.write( "\r\n" ); document.write( "This might make you wonder if this is true:\r\n" ); document.write( "\r\n" ); document.write( "For any prime t and any integer r, 0 < r < t-1,\r\n" ); document.write( "there will always be a prime p such that when \r\n" ); document.write( "p is divided by t, the remainder will be r.\r\n" ); document.write( "\r\n" ); document.write( "We just proved it true for t=17. \r\n" ); document.write( "\r\n" ); document.write( "Edwin\n" ); document.write( " |