document.write( "Question 1207627: If a,b,c are in AP then prove that a^2(b+c),b^2(c+a),c^2(a+b) are in AP \n" ); document.write( "
Algebra.Com's Answer #845600 by Edwin McCravy(20059)\"\" \"About 
You can put this solution on YOUR website!
If a,b,c are in AP then prove that a^2(b+c),b^2(c+a),c^2(a+b) are in AP.
\n" ); document.write( "
\r\n" );
document.write( "let the common difference be d\r\n" );
document.write( "\r\n" );
document.write( "a = b-d\r\n" );
document.write( "c = b+d\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So they are in AP with common difference \"%283b%5E2d+-+d%5E3%29\"\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" ); document.write( "
\n" );