document.write( "Question 1207596: What is the smallest prime divisor of 5^{19} + 7^{13} + 23? \n" ); document.write( "
Algebra.Com's Answer #845565 by ikleyn(52879)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "What is the smallest prime divisor of 5^{19} + 7^{13} + 23?
\n" ); document.write( "~~~~~~~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "(a)  The prime number 2 is not a divisor of this sum\r\n" );
document.write( "\r\n" );
document.write( "     (because it is an odd number, as the sum of 3 odd numbers).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "(b)  The prime number 3 is not a divisor of this sum.\r\n" );
document.write( "\r\n" );
document.write( "     Indeed,  5^19 mod 3 = 2^19 mod 3  (because 5 mod 3 is 2).\r\n" );
document.write( "\r\n" );
document.write( "              The sequence \"2%5Ek\" mod 3 is cyclic 2, 1, 2, 1, . . ., and its 19th term is 2.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "     Next,    \"7%5E13\" mod 3 = \"1%5E13\" mod 3   (because 7 mod 3 is 1).\r\n" );
document.write( "\r\n" );
document.write( "              So,  \"7%5E13\" mod 3 is 1.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "     Therefore,  5^{19} + 7^{13} + 23 mod 3 is the same as 2 + 1 + 23 mod 3, which is 2.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "(c)  The prime number 5 is the prime divisor of  5^{19} + 7^{13} + 23.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "     Indeed, the first addend  \"5%5E19\"  is a multiple of 5;\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "     Next addend  7^13 mod 5 = 2^13 mod 5  (since 7 mod 5 is 2).\r\n" );
document.write( "                               \r\n" );
document.write( "          The sequence  \"2%5Ek\" mod 5 is  cyclical 2, 4, 3, 1, 2, 4, 3, 1 . . . with the period length 4;\r\n" );
document.write( "          \r\n" );
document.write( "          therefore,  \"2%5E13\" mod 5  is  2.  So,  \"7%5E13\" mod5 is 2.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "     Now, the sum of three terms  5^{19} + 7^{13} + 23  is 0 + 2 + 24 mod 5, which is the same as 0 mod 5.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Thus 5 is the smallest prime divisor of the sum  5^{19} + 7^{13} + 23.    ANSWER\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved, with explanations.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );