document.write( "Question 1207589: In the diagram, ABCD is a square. Find sin angle PAQ.\r
\n" );
document.write( "\n" );
document.write( "P is on BC such that BP = 2 and PC = 3, and Q is on CD such that CQ = 2 and QD = 3. \n" );
document.write( "
Algebra.Com's Answer #845546 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "This is possibly what the diagram looks like \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Focus on right triangle PAB. \n" ); document.write( "We'll use the tangent trig ratio to determine the following. \n" ); document.write( "tan(angle) = opposite/adjacent \n" ); document.write( "tan(angle PAB) = PB/AB \n" ); document.write( "tan(angle PAB) = 2/5 \n" ); document.write( "angle PAB = arctan(2/5) \n" ); document.write( "angle PAB = 21.801409 degrees approximately.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now move your attention to right triangle DAQ. \n" ); document.write( "tan(angle) = opposite/adjacent \n" ); document.write( "tan(angle DAQ) = DQ/AD \n" ); document.write( "tan(angle DAQ) = 3/5 \n" ); document.write( "angle DAQ = arctan(3/5) \n" ); document.write( "angle DAQ = 30.963757 degrees approximately.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Then, \n" ); document.write( "(angleDAQ) + (anglePAQ) + (anglePAB) = angleDAB \n" ); document.write( "(angleDAQ) + (anglePAQ) + (anglePAB) = 90 \n" ); document.write( "anglePAQ = 90 - (angleDAQ + anglePAB) \n" ); document.write( "anglePAQ = 90 - (30.963757 + 21.801409) \n" ); document.write( "anglePAQ = 37.234834 degrees approximately \n" ); document.write( "sin(angle PAQ) = sin(37.234834) = 0.605083 approximately\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "------------------------------------------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Another approach.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Use the Pythagorean Theorem to determine these lengths \n" ); document.write( "QA = sqrt(5^2+3^2) = 5.830952 approximately \n" ); document.write( "PA = sqrt(5^2+2^2) = 5.385165 approximately \n" ); document.write( "QP = sqrt(2^2+3^2) = 3.605551 approximately\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Focus on triangle PAQ of the diagram shown above. \n" ); document.write( "Use the Law of Cosines to find angle PAQ. \n" ); document.write( "a^2 = b^2+c^2-2*b*c*cos(A) \n" ); document.write( "(QP)^2 = (QA)^2+(PA)^2-2*(QA)*(PA)*cos(angle PAQ) \n" ); document.write( "(3.605551)^2 = (5.830952)^2+(5.385165)^2-2*(5.830952)*(5.385165)*cos(angle PAQ) \n" ); document.write( "12.999998 = 63.000003 -62.801277*cos(angle PAQ) \n" ); document.write( "12.999998 - 63.000003 = -62.801277cos(angle PAQ) \n" ); document.write( "-50.000005 = -62.801277cos(angle PAQ) \n" ); document.write( "cos(angle PAQ) = -50.000005/(-62.801277) \n" ); document.write( "cos(angle PAQ) = 0.796162 \n" ); document.write( "angle PAQ = 37.234852 \n" ); document.write( "There appears to be some slight rounding error going on. \n" ); document.write( "Compare this value to the previous angle PAQ measure found in the section above. \n" ); document.write( " \n" ); document.write( " |