document.write( "Question 1207589: In the diagram, ABCD is a square. Find sin angle PAQ.\r
\n" ); document.write( "\n" ); document.write( "P is on BC such that BP = 2 and PC = 3, and Q is on CD such that CQ = 2 and QD = 3.
\n" ); document.write( "

Algebra.Com's Answer #845546 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "This is possibly what the diagram looks like
\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Focus on right triangle PAB.
\n" ); document.write( "We'll use the tangent trig ratio to determine the following.
\n" ); document.write( "tan(angle) = opposite/adjacent
\n" ); document.write( "tan(angle PAB) = PB/AB
\n" ); document.write( "tan(angle PAB) = 2/5
\n" ); document.write( "angle PAB = arctan(2/5)
\n" ); document.write( "angle PAB = 21.801409 degrees approximately.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now move your attention to right triangle DAQ.
\n" ); document.write( "tan(angle) = opposite/adjacent
\n" ); document.write( "tan(angle DAQ) = DQ/AD
\n" ); document.write( "tan(angle DAQ) = 3/5
\n" ); document.write( "angle DAQ = arctan(3/5)
\n" ); document.write( "angle DAQ = 30.963757 degrees approximately.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Then,
\n" ); document.write( "(angleDAQ) + (anglePAQ) + (anglePAB) = angleDAB
\n" ); document.write( "(angleDAQ) + (anglePAQ) + (anglePAB) = 90
\n" ); document.write( "anglePAQ = 90 - (angleDAQ + anglePAB)
\n" ); document.write( "anglePAQ = 90 - (30.963757 + 21.801409)
\n" ); document.write( "anglePAQ = 37.234834 degrees approximately
\n" ); document.write( "sin(angle PAQ) = sin(37.234834) = 0.605083 approximately\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Another approach.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Use the Pythagorean Theorem to determine these lengths
\n" ); document.write( "QA = sqrt(5^2+3^2) = 5.830952 approximately
\n" ); document.write( "PA = sqrt(5^2+2^2) = 5.385165 approximately
\n" ); document.write( "QP = sqrt(2^2+3^2) = 3.605551 approximately\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Focus on triangle PAQ of the diagram shown above.
\n" ); document.write( "Use the Law of Cosines to find angle PAQ.
\n" ); document.write( "a^2 = b^2+c^2-2*b*c*cos(A)
\n" ); document.write( "(QP)^2 = (QA)^2+(PA)^2-2*(QA)*(PA)*cos(angle PAQ)
\n" ); document.write( "(3.605551)^2 = (5.830952)^2+(5.385165)^2-2*(5.830952)*(5.385165)*cos(angle PAQ)
\n" ); document.write( "12.999998 = 63.000003 -62.801277*cos(angle PAQ)
\n" ); document.write( "12.999998 - 63.000003 = -62.801277cos(angle PAQ)
\n" ); document.write( "-50.000005 = -62.801277cos(angle PAQ)
\n" ); document.write( "cos(angle PAQ) = -50.000005/(-62.801277)
\n" ); document.write( "cos(angle PAQ) = 0.796162
\n" ); document.write( "angle PAQ = 37.234852
\n" ); document.write( "There appears to be some slight rounding error going on.
\n" ); document.write( "Compare this value to the previous angle PAQ measure found in the section above.
\n" ); document.write( "
\n" ); document.write( "
\n" );