document.write( "Question 1207562: If the roots of the equation ax^2 + bx + c is equals to zero are alpha and beta find the equation whose roots are Alpha square and beta square \n" ); document.write( "
Algebra.Com's Answer #845497 by mananth(16946)![]() ![]() You can put this solution on YOUR website! If the roots of the equation ax^2 + bx + c is equals to zero are alpha and beta find the equation whose roots are Alpha square and beta square\r \n" ); document.write( "\n" ); document.write( "Instead of alpha and beta i will use p& q respectively\r \n" ); document.write( "\n" ); document.write( "ax^2 + bx + c =0\r \n" ); document.write( "\n" ); document.write( "p+q = -b/a and pq = c/a\r \n" ); document.write( "\n" ); document.write( "(p+q)^2 = b^2/a^2\r \n" ); document.write( "\n" ); document.write( "we have to find equation with roots p^2 and q^2\r \n" ); document.write( "\n" ); document.write( "p^2+q^2 = (p+q)^2-2pq (from identity)\r \n" ); document.write( "\n" ); document.write( "substitute (p+q)^2 and pq\r \n" ); document.write( "\n" ); document.write( "sum of roots\r \n" ); document.write( "\n" ); document.write( "p^2+q^2 = b^2/a^2-2(c/a) \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "product of roots\r \n" ); document.write( "\n" ); document.write( "p2q^2= (pq)^2 = c^2/a^2 \r \n" ); document.write( "\n" ); document.write( "The general form of a quadratic equation is x^2-(sum of roots)x+(product of roots)=0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x^2- (b^2/a^2-2(c/a) )x +c^2/a^2=0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x^2- ((b^2-2ac)/a^2) )x +c^2/a^2=0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "multiply by a^2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "a\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |