document.write( "Question 1207455: ABC is a triangle with ∠CAB=15
\n" ); document.write( "∘
\n" ); document.write( " and ∠ABC=30
\n" ); document.write( "∘
\n" ); document.write( " . If M is the midpoint of AB, Sin then ∠ACM= ?
\n" ); document.write( "

Algebra.Com's Answer #845440 by ikleyn(52787)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "ABC is a triangle with ∠CAB=15∘ and ∠ABC=30∘.
\n" ); document.write( "If M is the midpoint of AB, find ∠ACM.
\n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "        The solution by Edwin is perfect and deserves admiration.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "        My congratulations to Edwin with this great achievement.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "        I came to bring a shorter solution.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "The given part is shown in Figure 1 below.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "                       Figure 1.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Triangle ABC has the angles  A= 15°,  B= 30°  and  C= 180°-15°-30°= 135°.\r\n" );
document.write( "\r\n" );
document.write( "We want to find angle \"theta\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Draw perpendicular CH from vertex C to the base AB (Figure 2).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "                       Figure 2.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "First part of the solution is the same as that of Edwin' solution,\r\n" );
document.write( "\r\n" );
document.write( "and it shows that a = \"sqrt%283%29-1\", b = \"sqrt%282%29\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The rest of the solution is different (very simple and totally geometrical).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Triangle BHC is a right-angled triangle with the acute angle B of 30°.\r\n" );
document.write( "Hence, the opposite leg CH is half of the hypotenuse BC\r\n" );
document.write( "\r\n" );
document.write( "    CH = \"a%2F2\" = \"%28sqrt%283%29-1%29%2F2\",    (1)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "while its other leg BH is  \"sqrt%283%29%2F2\"  times the hypotenuse BC\r\n" );
document.write( "\r\n" );
document.write( "    BH = \"%28sqrt%283%29%2F2%29%2A%28sqrt%283%29-1%29\" = \"%283-sqrt%283%29%29%2F2\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Then the segment MH is the complement of BH to 1\r\n" );
document.write( "\r\n" );
document.write( "    MH = 1 - \"%283-sqrt%283%29%29%2F2\" = \"%282+-+3+%2B+sqrt%283%29%29%2F2\" = \"%28sqrt%283%29-1%29%2F2\".    (2)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Comparing expressions (1) and (2), we see that CH = MH.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Hence, right-angled triangle MHC is isosceles right-angled triangle,\r\n" );
document.write( "which implies that angle MCH is 45°.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Thus  ∠ACM = 135° - 60° - 45° = 30°,\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "and the problem is solved completely.\r\n" );
document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );