document.write( "Question 1207460: Use z = a + bi and w = c + di to show that (z • w) bar = z bar • w bar.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Note: one bar line over (z • w).\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #845339 by math_tutor2020(3817)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "a,b,c,d are real numbers
\n" ); document.write( "i = sqrt(-1) represents an imaginary number\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "z = a+bi
\n" ); document.write( "zBar = horizontal bar over \"a+bi\" = complex conjugate of z
\n" ); document.write( "zBar = a-bi
\n" ); document.write( "w = c+di
\n" ); document.write( "wBar = c-di\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "z*w = (a+bi)*(c+di)
\n" ); document.write( "z*w = a*(c+di)+bi*(c+di)
\n" ); document.write( "z*w = ac+adi+bci+bdi^2
\n" ); document.write( "z*w = ac+adi+bci+bd*(-1)
\n" ); document.write( "z*w = (ac-bd) + (ad+bc)i
\n" ); document.write( "(z*w)bar = (ac-bd) - (ad+bc)i
\n" ); document.write( "We'll return to this later.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "zBar*wBar = (a-bi)*(c-di)
\n" ); document.write( "zBar*wBar = a*(c-di)-bi*(c-di)
\n" ); document.write( "zBar*wBar = ac-adi-bci+bdi^2
\n" ); document.write( "zBar*wBar = ac-adi-bci+bd*(-1)
\n" ); document.write( "zBar*wBar = ac-adi-bci-bd
\n" ); document.write( "zBar*wBar = (ac-bd)+(-adi-bci)
\n" ); document.write( "zBar*wBar = (ac-bd)-(ad+bc)i
\n" ); document.write( "This is an identical match with the conclusion of the previous paragraph.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Therefore we have shown that (z*w)bar = zBar*wBar is indeed the case.
\n" ); document.write( "
\n" ); document.write( "
\n" );