document.write( "Question 1207460: Use z = a + bi and w = c + di to show that (z • w) bar = z bar • w bar.\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "Note: one bar line over (z • w).\r
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #845339 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "a,b,c,d are real numbers \n" ); document.write( "i = sqrt(-1) represents an imaginary number\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "z = a+bi \n" ); document.write( "zBar = horizontal bar over \"a+bi\" = complex conjugate of z \n" ); document.write( "zBar = a-bi \n" ); document.write( "w = c+di \n" ); document.write( "wBar = c-di\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "z*w = (a+bi)*(c+di) \n" ); document.write( "z*w = a*(c+di)+bi*(c+di) \n" ); document.write( "z*w = ac+adi+bci+bdi^2 \n" ); document.write( "z*w = ac+adi+bci+bd*(-1) \n" ); document.write( "z*w = (ac-bd) + (ad+bc)i \n" ); document.write( "(z*w)bar = (ac-bd) - (ad+bc)i \n" ); document.write( "We'll return to this later.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "zBar*wBar = (a-bi)*(c-di) \n" ); document.write( "zBar*wBar = a*(c-di)-bi*(c-di) \n" ); document.write( "zBar*wBar = ac-adi-bci+bdi^2 \n" ); document.write( "zBar*wBar = ac-adi-bci+bd*(-1) \n" ); document.write( "zBar*wBar = ac-adi-bci-bd \n" ); document.write( "zBar*wBar = (ac-bd)+(-adi-bci) \n" ); document.write( "zBar*wBar = (ac-bd)-(ad+bc)i \n" ); document.write( "This is an identical match with the conclusion of the previous paragraph.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Therefore we have shown that (z*w)bar = zBar*wBar is indeed the case. \n" ); document.write( " \n" ); document.write( " |